1414from .utils import _read_pfm , download_and_extract_archive , verify_str_arg
1515from .vision import VisionDataset
1616
17- T1 = Tuple [Image .Image , Image .Image , Optional [np .ndarray ], np .ndarray ]
18- T2 = Tuple [Image .Image , Image .Image , Optional [np .ndarray ]]
17+ T1 = tuple [Image .Image , Image .Image , Optional [np .ndarray ], np .ndarray ]
18+ T2 = tuple [Image .Image , Image .Image , Optional [np .ndarray ]]
1919
2020__all__ = ()
2121
@@ -65,11 +65,11 @@ def _scan_pairs(
6565 self ,
6666 paths_left_pattern : str ,
6767 paths_right_pattern : Optional [str ] = None ,
68- ) -> List [ Tuple [str , Optional [str ]]]:
68+ ) -> list [ tuple [str , Optional [str ]]]:
6969
7070 left_paths = list (sorted (glob (paths_left_pattern )))
7171
72- right_paths : List [Union [None , str ]]
72+ right_paths : list [Union [None , str ]]
7373 if paths_right_pattern :
7474 right_paths = list (sorted (glob (paths_right_pattern )))
7575 else :
@@ -92,7 +92,7 @@ def _scan_pairs(
9292 return paths
9393
9494 @abstractmethod
95- def _read_disparity (self , file_path : str ) -> Tuple [Optional [np .ndarray ], Optional [np .ndarray ]]:
95+ def _read_disparity (self , file_path : str ) -> tuple [Optional [np .ndarray ], Optional [np .ndarray ]]:
9696 # function that returns a disparity map and an occlusion map
9797 pass
9898
@@ -178,7 +178,7 @@ def __init__(self, root: Union[str, Path], transforms: Optional[Callable] = None
178178 disparities = self ._scan_pairs (left_disparity_pattern , right_disparity_pattern )
179179 self ._disparities = disparities
180180
181- def _read_disparity (self , file_path : str ) -> Tuple [np .ndarray , None ]:
181+ def _read_disparity (self , file_path : str ) -> tuple [np .ndarray , None ]:
182182 disparity_map = _read_pfm_file (file_path )
183183 disparity_map = np .abs (disparity_map ) # ensure that the disparity is positive
184184 valid_mask = None
@@ -257,7 +257,7 @@ def __init__(self, root: Union[str, Path], split: str = "train", transforms: Opt
257257 else :
258258 self ._disparities = list ((None , None ) for _ in self ._images )
259259
260- def _read_disparity (self , file_path : str ) -> Tuple [Optional [np .ndarray ], None ]:
260+ def _read_disparity (self , file_path : str ) -> tuple [Optional [np .ndarray ], None ]:
261261 # test split has no disparity maps
262262 if file_path is None :
263263 return None , None
@@ -345,7 +345,7 @@ def __init__(self, root: Union[str, Path], split: str = "train", transforms: Opt
345345 else :
346346 self ._disparities = list ((None , None ) for _ in self ._images )
347347
348- def _read_disparity (self , file_path : str ) -> Tuple [Optional [np .ndarray ], None ]:
348+ def _read_disparity (self , file_path : str ) -> tuple [Optional [np .ndarray ], None ]:
349349 # test split has no disparity maps
350350 if file_path is None :
351351 return None , None
@@ -549,7 +549,7 @@ def _read_img(self, file_path: Union[str, Path]) -> Image.Image:
549549 When ``use_ambient_views`` is True, the dataset will return at random one of ``[im1.png, im1E.png, im1L.png]``
550550 as the right image.
551551 """
552- ambient_file_paths : List [Union [str , Path ]] # make mypy happy
552+ ambient_file_paths : list [Union [str , Path ]] # make mypy happy
553553
554554 if not isinstance (file_path , Path ):
555555 file_path = Path (file_path )
@@ -565,7 +565,7 @@ def _read_img(self, file_path: Union[str, Path]) -> Image.Image:
565565 file_path = random .choice (ambient_file_paths ) # type: ignore
566566 return super ()._read_img (file_path )
567567
568- def _read_disparity (self , file_path : str ) -> Union [Tuple [None , None ], Tuple [np .ndarray , np .ndarray ]]:
568+ def _read_disparity (self , file_path : str ) -> Union [tuple [None , None ], tuple [np .ndarray , np .ndarray ]]:
569569 # test split has not disparity maps
570570 if file_path is None :
571571 return None , None
@@ -694,7 +694,7 @@ def __init__(
694694 disparities = self ._scan_pairs (left_disparity_pattern , right_disparity_pattern )
695695 self ._disparities += disparities
696696
697- def _read_disparity (self , file_path : str ) -> Tuple [np .ndarray , None ]:
697+ def _read_disparity (self , file_path : str ) -> tuple [np .ndarray , None ]:
698698 disparity_map = np .asarray (Image .open (file_path ), dtype = np .float32 )
699699 # unsqueeze the disparity map into (C, H, W) format
700700 disparity_map = disparity_map [None , :, :] / 32.0
@@ -788,13 +788,13 @@ def __init__(self, root: Union[str, Path], variant: str = "single", transforms:
788788 right_disparity_pattern = str (root / s / split_prefix [s ] / "*.right.depth.png" )
789789 self ._disparities += self ._scan_pairs (left_disparity_pattern , right_disparity_pattern )
790790
791- def _read_disparity (self , file_path : str ) -> Tuple [np .ndarray , None ]:
791+ def _read_disparity (self , file_path : str ) -> tuple [np .ndarray , None ]:
792792 # (H, W) image
793793 depth = np .asarray (Image .open (file_path ))
794794 # as per https://research.nvidia.com/sites/default/files/pubs/2018-06_Falling-Things/readme_0.txt
795795 # in order to extract disparity from depth maps
796796 camera_settings_path = Path (file_path ).parent / "_camera_settings.json"
797- with open (camera_settings_path , "r" ) as f :
797+ with open (camera_settings_path ) as f :
798798 # inverse of depth-from-disparity equation: depth = (baseline * focal) / (disparity * pixel_constant)
799799 intrinsics = json .load (f )
800800 focal = intrinsics ["camera_settings" ][0 ]["intrinsic_settings" ]["fx" ]
@@ -911,7 +911,7 @@ def __init__(
911911 right_disparity_pattern = str (root / "disparity" / prefix_directories [variant ] / "right" / "*.pfm" )
912912 self ._disparities += self ._scan_pairs (left_disparity_pattern , right_disparity_pattern )
913913
914- def _read_disparity (self , file_path : str ) -> Tuple [np .ndarray , None ]:
914+ def _read_disparity (self , file_path : str ) -> tuple [np .ndarray , None ]:
915915 disparity_map = _read_pfm_file (file_path )
916916 disparity_map = np .abs (disparity_map ) # ensure that the disparity is positive
917917 valid_mask = None
@@ -999,7 +999,7 @@ def __init__(self, root: Union[str, Path], pass_name: str = "final", transforms:
999999 disparity_pattern = str (root / "training" / "disparities" / "*" / "*.png" )
10001000 self ._disparities += self ._scan_pairs (disparity_pattern , None )
10011001
1002- def _get_occlussion_mask_paths (self , file_path : str ) -> Tuple [str , str ]:
1002+ def _get_occlussion_mask_paths (self , file_path : str ) -> tuple [str , str ]:
10031003 # helper function to get the occlusion mask paths
10041004 # a path will look like .../.../.../training/disparities/scene1/img1.png
10051005 # we want to get something like .../.../.../training/occlusions/scene1/img1.png
@@ -1020,7 +1020,7 @@ def _get_occlussion_mask_paths(self, file_path: str) -> Tuple[str, str]:
10201020
10211021 return occlusion_path , outofframe_path
10221022
1023- def _read_disparity (self , file_path : str ) -> Union [Tuple [None , None ], Tuple [np .ndarray , np .ndarray ]]:
1023+ def _read_disparity (self , file_path : str ) -> Union [tuple [None , None ], tuple [np .ndarray , np .ndarray ]]:
10241024 if file_path is None :
10251025 return None , None
10261026
@@ -1101,7 +1101,7 @@ def __init__(self, root: Union[str, Path], split: str = "train", transforms: Opt
11011101 right_disparity_pattern = str (root / "*" / "right_disp.png" )
11021102 self ._disparities = self ._scan_pairs (left_disparity_pattern , right_disparity_pattern )
11031103
1104- def _read_disparity (self , file_path : str ) -> Tuple [np .ndarray , None ]:
1104+ def _read_disparity (self , file_path : str ) -> tuple [np .ndarray , None ]:
11051105 disparity_map = np .asarray (Image .open (file_path ), dtype = np .float32 )
11061106 # unsqueeze disparity to (C, H, W)
11071107 disparity_map = disparity_map [None , :, :] / 1024.0
@@ -1195,7 +1195,7 @@ def __init__(self, root: Union[str, Path], split: str = "train", transforms: Opt
11951195 disparity_pattern = str (root / anot_dir / "*" / "disp0GT.pfm" )
11961196 self ._disparities = self ._scan_pairs (disparity_pattern , None )
11971197
1198- def _read_disparity (self , file_path : str ) -> Union [Tuple [None , None ], Tuple [np .ndarray , np .ndarray ]]:
1198+ def _read_disparity (self , file_path : str ) -> Union [tuple [None , None ], tuple [np .ndarray , np .ndarray ]]:
11991199 # test split has no disparity maps
12001200 if file_path is None :
12011201 return None , None
0 commit comments