|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 16, |
| 6 | + "id": "peaceful-legend", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import nltk\n", |
| 11 | + "import pandas as pd\n", |
| 12 | + "from nltk.stem import WordNetLemmatizer \n", |
| 13 | + "lemmatizer = WordNetLemmatizer()" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": 2, |
| 19 | + "id": "featured-strategy", |
| 20 | + "metadata": {}, |
| 21 | + "outputs": [ |
| 22 | + { |
| 23 | + "data": { |
| 24 | + "text/html": [ |
| 25 | + "<div>\n", |
| 26 | + "<style scoped>\n", |
| 27 | + " .dataframe tbody tr th:only-of-type {\n", |
| 28 | + " vertical-align: middle;\n", |
| 29 | + " }\n", |
| 30 | + "\n", |
| 31 | + " .dataframe tbody tr th {\n", |
| 32 | + " vertical-align: top;\n", |
| 33 | + " }\n", |
| 34 | + "\n", |
| 35 | + " .dataframe thead th {\n", |
| 36 | + " text-align: right;\n", |
| 37 | + " }\n", |
| 38 | + "</style>\n", |
| 39 | + "<table border=\"1\" class=\"dataframe\">\n", |
| 40 | + " <thead>\n", |
| 41 | + " <tr style=\"text-align: right;\">\n", |
| 42 | + " <th></th>\n", |
| 43 | + " <th>Review</th>\n", |
| 44 | + " <th>Liked</th>\n", |
| 45 | + " </tr>\n", |
| 46 | + " </thead>\n", |
| 47 | + " <tbody>\n", |
| 48 | + " <tr>\n", |
| 49 | + " <th>0</th>\n", |
| 50 | + " <td>Wow... Loved this place.</td>\n", |
| 51 | + " <td>1</td>\n", |
| 52 | + " </tr>\n", |
| 53 | + " <tr>\n", |
| 54 | + " <th>1</th>\n", |
| 55 | + " <td>Crust is not good.</td>\n", |
| 56 | + " <td>0</td>\n", |
| 57 | + " </tr>\n", |
| 58 | + " <tr>\n", |
| 59 | + " <th>2</th>\n", |
| 60 | + " <td>Not tasty and the texture was just nasty.</td>\n", |
| 61 | + " <td>0</td>\n", |
| 62 | + " </tr>\n", |
| 63 | + " <tr>\n", |
| 64 | + " <th>3</th>\n", |
| 65 | + " <td>Stopped by during the late May bank holiday of...</td>\n", |
| 66 | + " <td>1</td>\n", |
| 67 | + " </tr>\n", |
| 68 | + " <tr>\n", |
| 69 | + " <th>4</th>\n", |
| 70 | + " <td>The selection on the menu was great and so wer...</td>\n", |
| 71 | + " <td>1</td>\n", |
| 72 | + " </tr>\n", |
| 73 | + " </tbody>\n", |
| 74 | + "</table>\n", |
| 75 | + "</div>" |
| 76 | + ], |
| 77 | + "text/plain": [ |
| 78 | + " Review Liked\n", |
| 79 | + "0 Wow... Loved this place. 1\n", |
| 80 | + "1 Crust is not good. 0\n", |
| 81 | + "2 Not tasty and the texture was just nasty. 0\n", |
| 82 | + "3 Stopped by during the late May bank holiday of... 1\n", |
| 83 | + "4 The selection on the menu was great and so wer... 1" |
| 84 | + ] |
| 85 | + }, |
| 86 | + "execution_count": 2, |
| 87 | + "metadata": {}, |
| 88 | + "output_type": "execute_result" |
| 89 | + } |
| 90 | + ], |
| 91 | + "source": [ |
| 92 | + "df = pd.read_csv(\"Restaurant_Reviews.tsv\",sep='\\t')\n", |
| 93 | + "df.head()" |
| 94 | + ] |
| 95 | + }, |
| 96 | + { |
| 97 | + "cell_type": "code", |
| 98 | + "execution_count": 3, |
| 99 | + "id": "colonial-cassette", |
| 100 | + "metadata": {}, |
| 101 | + "outputs": [ |
| 102 | + { |
| 103 | + "data": { |
| 104 | + "text/plain": [ |
| 105 | + "'Wow... Loved this place.'" |
| 106 | + ] |
| 107 | + }, |
| 108 | + "execution_count": 3, |
| 109 | + "metadata": {}, |
| 110 | + "output_type": "execute_result" |
| 111 | + } |
| 112 | + ], |
| 113 | + "source": [ |
| 114 | + "df.iloc[0]['Review']" |
| 115 | + ] |
| 116 | + }, |
| 117 | + { |
| 118 | + "cell_type": "code", |
| 119 | + "execution_count": 4, |
| 120 | + "id": "owned-adelaide", |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "import re\n", |
| 125 | + "from nltk.stem import PorterStemmer\n", |
| 126 | + "from nltk.corpus import stopwords\n", |
| 127 | + "ps = PorterStemmer()\n", |
| 128 | + "\n", |
| 129 | + "corpus=[]\n", |
| 130 | + "for i in range(0,len(df)):\n", |
| 131 | + " Review = re.sub('[^a-zA-Z]',' ',df['Review'][i])\n", |
| 132 | + " Review = Review.lower()\n", |
| 133 | + " Review = Review.split()\n", |
| 134 | + " Review = [ps.stem(word) for word in Review if word not in set(stopwords.words('english'))]\n", |
| 135 | + " Review = ' '.join(Review)\n", |
| 136 | + " corpus.append(Review)" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": 5, |
| 142 | + "id": "ambient-backing", |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [ |
| 145 | + { |
| 146 | + "data": { |
| 147 | + "text/plain": [ |
| 148 | + "'wow love place'" |
| 149 | + ] |
| 150 | + }, |
| 151 | + "execution_count": 5, |
| 152 | + "metadata": {}, |
| 153 | + "output_type": "execute_result" |
| 154 | + } |
| 155 | + ], |
| 156 | + "source": [ |
| 157 | + "corpus[0]" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": 6, |
| 163 | + "id": "brave-start", |
| 164 | + "metadata": {}, |
| 165 | + "outputs": [ |
| 166 | + { |
| 167 | + "data": { |
| 168 | + "text/plain": [ |
| 169 | + "Review 0\n", |
| 170 | + "Liked 0\n", |
| 171 | + "dtype: int64" |
| 172 | + ] |
| 173 | + }, |
| 174 | + "execution_count": 6, |
| 175 | + "metadata": {}, |
| 176 | + "output_type": "execute_result" |
| 177 | + } |
| 178 | + ], |
| 179 | + "source": [ |
| 180 | + "df.isnull().sum()" |
| 181 | + ] |
| 182 | + }, |
| 183 | + { |
| 184 | + "cell_type": "code", |
| 185 | + "execution_count": 7, |
| 186 | + "id": "cloudy-enterprise", |
| 187 | + "metadata": {}, |
| 188 | + "outputs": [], |
| 189 | + "source": [ |
| 190 | + "X = df['Review']\n", |
| 191 | + "y = df['Liked']" |
| 192 | + ] |
| 193 | + }, |
| 194 | + { |
| 195 | + "cell_type": "code", |
| 196 | + "execution_count": 8, |
| 197 | + "id": "intellectual-latino", |
| 198 | + "metadata": {}, |
| 199 | + "outputs": [ |
| 200 | + { |
| 201 | + "data": { |
| 202 | + "text/plain": [ |
| 203 | + "0 50.0\n", |
| 204 | + "1 50.0\n", |
| 205 | + "Name: Liked, dtype: float64" |
| 206 | + ] |
| 207 | + }, |
| 208 | + "execution_count": 8, |
| 209 | + "metadata": {}, |
| 210 | + "output_type": "execute_result" |
| 211 | + } |
| 212 | + ], |
| 213 | + "source": [ |
| 214 | + "y.value_counts(1)*100" |
| 215 | + ] |
| 216 | + }, |
| 217 | + { |
| 218 | + "cell_type": "code", |
| 219 | + "execution_count": 9, |
| 220 | + "id": "returning-cartridge", |
| 221 | + "metadata": {}, |
| 222 | + "outputs": [], |
| 223 | + "source": [ |
| 224 | + "# Train Test Split\n", |
| 225 | + "from sklearn.model_selection import train_test_split\n", |
| 226 | + "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.30, random_state = 0)" |
| 227 | + ] |
| 228 | + }, |
| 229 | + { |
| 230 | + "cell_type": "code", |
| 231 | + "execution_count": 10, |
| 232 | + "id": "curious-modem", |
| 233 | + "metadata": {}, |
| 234 | + "outputs": [], |
| 235 | + "source": [ |
| 236 | + "from sklearn.feature_extraction.text import TfidfVectorizer\n", |
| 237 | + "vectorizer = TfidfVectorizer()\n", |
| 238 | + "X_train_vect = vectorizer.fit_transform(X_train)\n", |
| 239 | + "X_test_vect = vectorizer.transform(X_test)" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "code", |
| 244 | + "execution_count": 11, |
| 245 | + "id": "ordered-consumption", |
| 246 | + "metadata": {}, |
| 247 | + "outputs": [ |
| 248 | + { |
| 249 | + "data": { |
| 250 | + "text/plain": [ |
| 251 | + "LogisticRegression()" |
| 252 | + ] |
| 253 | + }, |
| 254 | + "execution_count": 11, |
| 255 | + "metadata": {}, |
| 256 | + "output_type": "execute_result" |
| 257 | + } |
| 258 | + ], |
| 259 | + "source": [ |
| 260 | + "from sklearn.linear_model import LogisticRegression\n", |
| 261 | + "clf = LogisticRegression(solver='lbfgs')\n", |
| 262 | + "clf.fit(X_train_vect,y_train)" |
| 263 | + ] |
| 264 | + }, |
| 265 | + { |
| 266 | + "cell_type": "code", |
| 267 | + "execution_count": 12, |
| 268 | + "id": "prepared-acrobat", |
| 269 | + "metadata": {}, |
| 270 | + "outputs": [ |
| 271 | + { |
| 272 | + "name": "stdout", |
| 273 | + "output_type": "stream", |
| 274 | + "text": [ |
| 275 | + " precision recall f1-score support\n", |
| 276 | + "\n", |
| 277 | + " 0 0.75 0.85 0.80 143\n", |
| 278 | + " 1 0.84 0.75 0.79 157\n", |
| 279 | + "\n", |
| 280 | + " accuracy 0.79 300\n", |
| 281 | + " macro avg 0.80 0.80 0.79 300\n", |
| 282 | + "weighted avg 0.80 0.79 0.79 300\n", |
| 283 | + "\n" |
| 284 | + ] |
| 285 | + } |
| 286 | + ], |
| 287 | + "source": [ |
| 288 | + "from sklearn.metrics import accuracy_score, classification_report\n", |
| 289 | + "y_pred = clf.predict(X_test_vect)\n", |
| 290 | + "accuracy_score(y_test,y_pred)\n", |
| 291 | + "print(classification_report(y_test,y_pred))" |
| 292 | + ] |
| 293 | + }, |
| 294 | + { |
| 295 | + "cell_type": "code", |
| 296 | + "execution_count": 19, |
| 297 | + "id": "universal-moore", |
| 298 | + "metadata": {}, |
| 299 | + "outputs": [ |
| 300 | + { |
| 301 | + "name": "stdout", |
| 302 | + "output_type": "stream", |
| 303 | + "text": [ |
| 304 | + "This is Positive Review\n" |
| 305 | + ] |
| 306 | + } |
| 307 | + ], |
| 308 | + "source": [ |
| 309 | + "test = \"this resturnt is good\" \n", |
| 310 | + "\n", |
| 311 | + "a = re.sub('[^a-zA-Z]',' ',test)\n", |
| 312 | + "a = a.lower()\n", |
| 313 | + "a = a.split()\n", |
| 314 | + "a = [lemmatizer.lemmatize(word) for word in a ]\n", |
| 315 | + "a = ' '.join(a)\n", |
| 316 | + "\n", |
| 317 | + "\n", |
| 318 | + "example_counts = vectorizer.transform([a])\n", |
| 319 | + "\n", |
| 320 | + "prediction =clf.predict(example_counts)\n", |
| 321 | + "prediction[0]\n", |
| 322 | + "\n", |
| 323 | + "if prediction[0]==0:\n", |
| 324 | + " print(\"This is Negative Review\")\n", |
| 325 | + "elif prediction[0]==1:\n", |
| 326 | + " print(\"This is Positive Review\")" |
| 327 | + ] |
| 328 | + }, |
| 329 | + { |
| 330 | + "cell_type": "code", |
| 331 | + "execution_count": null, |
| 332 | + "id": "colored-investment", |
| 333 | + "metadata": {}, |
| 334 | + "outputs": [], |
| 335 | + "source": [] |
| 336 | + } |
| 337 | + ], |
| 338 | + "metadata": { |
| 339 | + "kernelspec": { |
| 340 | + "display_name": "Python 3", |
| 341 | + "language": "python", |
| 342 | + "name": "python3" |
| 343 | + }, |
| 344 | + "language_info": { |
| 345 | + "codemirror_mode": { |
| 346 | + "name": "ipython", |
| 347 | + "version": 3 |
| 348 | + }, |
| 349 | + "file_extension": ".py", |
| 350 | + "mimetype": "text/x-python", |
| 351 | + "name": "python", |
| 352 | + "nbconvert_exporter": "python", |
| 353 | + "pygments_lexer": "ipython3", |
| 354 | + "version": "3.7.6" |
| 355 | + } |
| 356 | + }, |
| 357 | + "nbformat": 4, |
| 358 | + "nbformat_minor": 5 |
| 359 | +} |
0 commit comments