-
- Notifications
You must be signed in to change notification settings - Fork 649
Open
Description
Hi. Thanks to this code, I was able to write a multi-label classification model well.
By the way, can you tell me how to export the model made like this using torch.onnx? An error occurred when I used the normal torch.onnx.export method.
My code :
test_comment="hello" encoding = tokenizer.encode_plus( test_comment, add_special_tokens=True, max_length=63, return_token_type_ids=False, padding="max_length", return_attention_mask=True, return_tensors='pt', ) torch.onnx.export(trained_model, (encoding["input_ids"], encoding["attention_mask"]), 'model.onnx', export_params=True, do_constant_folding=True, opset_version=11, input_names=['input_ids', 'attention_mask'], output_names=['output'], ) error :
RuntimeError Traceback (most recent call last) <ipython-input-49-9c2e1e064898> in <module> ----> 1 torch.onnx.export(trained_model, 2 (encoding["input_ids"], encoding["attention_mask"]), 3 'model.onnx', 4 export_params=True, 5 do_constant_folding=True, ~/anaconda3/envs/myenv1/lib/python3.8/site-packages/torch/onnx/__init__.py in export(model, args, f, export_params, verbose, training, input_names, output_names, aten, export_raw_ir, operator_export_type, opset_version, _retain_param_name, do_constant_folding, example_outputs, strip_doc_string, dynamic_axes, keep_initializers_as_inputs, custom_opsets, enable_onnx_checker, use_external_data_format) 273 274 from torch.onnx import utils --> 275 return utils.export(model, args, f, export_params, verbose, training, 276 input_names, output_names, aten, export_raw_ir, 277 operator_export_type, opset_version, _retain_param_name, ~/anaconda3/envs/myenv1/lib/python3.8/site-packages/torch/onnx/utils.py in export(model, args, f, export_params, verbose, training, input_names, output_names, aten, export_raw_ir, operator_export_type, opset_version, _retain_param_name, do_constant_folding, example_outputs, strip_doc_string, dynamic_axes, keep_initializers_as_inputs, custom_opsets, enable_onnx_checker, use_external_data_format) 86 else: 87 operator_export_type = OperatorExportTypes.ONNX ---> 88 _export(model, args, f, export_params, verbose, training, input_names, output_names, 89 operator_export_type=operator_export_type, opset_version=opset_version, 90 _retain_param_name=_retain_param_name, do_constant_folding=do_constant_folding, ~/anaconda3/envs/myenv1/lib/python3.8/site-packages/torch/onnx/utils.py in _export(model, args, f, export_params, verbose, training, input_names, output_names, operator_export_type, export_type, example_outputs, opset_version, _retain_param_name, do_constant_folding, strip_doc_string, dynamic_axes, keep_initializers_as_inputs, fixed_batch_size, custom_opsets, add_node_names, enable_onnx_checker, use_external_data_format, onnx_shape_inference) 687 ... 128 wrapper, 129 in_vars + module_state, RuntimeError: output 1 (0 [ CPULongType{} ]) of traced region did not have observable data dependence with trace inputs; this probably indicates your program cannot be understood by the tracer. Thank you in advance for your reply.
Metadata
Metadata
Assignees
Labels
No labels