|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | +# main.py |
| 3 | +# author: yangrui |
| 4 | +# description: |
| 5 | +# created: 2019-05-10T19:01:15.155Z+08:00 |
| 6 | +# last-modified: 2020-03-13T10:00:30.182Z+08:00 |
| 7 | +# email: yangrui19@mails.tsinghua.edu.cn |
| 8 | + |
| 9 | +from global_utils import print_summary |
| 10 | +from options import parse_options |
| 11 | +from global_utils import set_global_seed, save_performance, plot_data |
| 12 | +import time |
| 13 | +from agent_env_params import design_agent_and_env |
| 14 | +from multiprocessing import Process |
| 15 | +import random |
| 16 | + |
| 17 | +from environment import Environment |
| 18 | +from agent import Agent |
| 19 | + |
| 20 | + |
| 21 | +def run_HAC(FLAGS,env,agent, plot_figure=False, num=0): |
| 22 | + from global_utils import save_plot_figure # import here is for mutilprocessing |
| 23 | + |
| 24 | + NUM_EPOCH = FLAGS.num_epochs |
| 25 | + SAVE_FREQ = FLAGS.save_freq |
| 26 | + # Print task summary |
| 27 | + print_summary(FLAGS, env) |
| 28 | + |
| 29 | + if not FLAGS.test: |
| 30 | + num_episodes = FLAGS.num_exploration_episodes |
| 31 | + else: |
| 32 | + num_episodes = FLAGS.num_test_episodes |
| 33 | + NUM_EPOCH = 1 # only test 1 epoch |
| 34 | + |
| 35 | + performance_list = [] |
| 36 | + test_performance_list = [] |
| 37 | + if FLAGS.curriculum >= 2: |
| 38 | + curriculum_epoch = NUM_EPOCH / FLAGS.curriculum |
| 39 | + assert curriculum_epoch == int(curriculum_epoch), 'NUM_EPOCH / FLAGS.curriculum should be int' |
| 40 | + |
| 41 | + for epoch in range(1, NUM_EPOCH + 1): |
| 42 | + successful_episodes = 0 |
| 43 | + if not FLAGS.test and FLAGS.curriculum >= 2: |
| 44 | + env.set_goal_range(env_params['curriculum_list'][int((epoch - 1) // curriculum_epoch)]) |
| 45 | + |
| 46 | + for episode in range(num_episodes): |
| 47 | + print("\nEpoch %d, Episode %d" % (epoch, episode)) |
| 48 | + # Train for an epoch |
| 49 | + success = agent.train(env, epoch * num_episodes + episode,test=FLAGS.test) |
| 50 | + if success: |
| 51 | + print("End Goal Achieved\n") |
| 52 | + successful_episodes += 1 |
| 53 | + # Save agent |
| 54 | + if epoch % SAVE_FREQ == 0 and not FLAGS.test and FLAGS.threadings == 1: |
| 55 | + agent.save_model(epoch * num_episodes) |
| 56 | + success_rate = successful_episodes / num_episodes * 100 |
| 57 | + print("\nEpoch %d, Success Rate %.2f%%" % (epoch, success_rate)) |
| 58 | + performance_list.append(success_rate) |
| 59 | + |
| 60 | + if not FLAGS.test: |
| 61 | + success_test = 0 |
| 62 | + if FLAGS.curriculum >= 2: |
| 63 | + env.set_goal_range(env_params['curriculum_list'][-1]) |
| 64 | + |
| 65 | + print('\ntesting for %d episodes' % (FLAGS.num_test_episodes)) |
| 66 | + for episode in range(FLAGS.num_test_episodes): |
| 67 | + success = agent.train(env, episode, test=True) |
| 68 | + success_test += int(success) |
| 69 | + success_rate = success_test / FLAGS.num_test_episodes * 100 |
| 70 | + print('testing accuracy: %.2f%%' % (success_rate)) |
| 71 | + test_performance_list.append(success_test) |
| 72 | + |
| 73 | + if plot_figure: |
| 74 | + save_plot_figure(performance_list) |
| 75 | + save_plot_figure(test_performance_list, name='test-performance.jpg') |
| 76 | + |
| 77 | + save_performance(performance_list, test_performance_list, FLAGS=FLAGS, thread_num=num) |
| 78 | + if FLAGS.save_experience: |
| 79 | + agent.save_experience() |
| 80 | + |
| 81 | + |
| 82 | + |
| 83 | +def worker(agent_params, env_params, FLAGS, i): |
| 84 | + seed = int(time.time()) + random.randint(0, 100) |
| 85 | + set_global_seed(seed) |
| 86 | + FLAGS.seed = seed |
| 87 | + env = Environment(env_params, FLAGS) |
| 88 | + agent = Agent(FLAGS, env, agent_params) |
| 89 | + run_HAC(FLAGS, env, agent, plot_figure=False, num=i) |
| 90 | + |
| 91 | + |
| 92 | +FLAGS = parse_options() |
| 93 | +agent_params, env_params = design_agent_and_env(FLAGS) |
| 94 | + |
| 95 | +assert FLAGS.threadings >= 1, "Threadings should be more than 1!" |
| 96 | +if FLAGS.threadings == 1: |
| 97 | + seed = int(time.time()) + random.randint(0,100) |
| 98 | + set_global_seed(seed) |
| 99 | + FLAGS.seed = seed |
| 100 | + env = Environment(env_params, FLAGS) |
| 101 | + agent = Agent(FLAGS, env, agent_params) |
| 102 | + run_HAC(FLAGS, env, agent, plot_figure=True) |
| 103 | +else: |
| 104 | + # parallel run |
| 105 | + thread_list = [] |
| 106 | + for i in range(FLAGS.threadings): |
| 107 | + p = Process(target=worker, args=(agent_params, env_params, FLAGS, i)) |
| 108 | + p.start() |
| 109 | + thread_list.append(p) |
| 110 | + |
| 111 | + for p in thread_list: |
| 112 | + p.join() |
| 113 | + |
| 114 | + |
| 115 | + |
| 116 | + |
| 117 | + |
| 118 | + |
| 119 | + |
| 120 | + |
| 121 | + |
| 122 | + |
0 commit comments