Linear OT mapping estimation

Note

Example updated in release: 0.9.1.

# Author: Remi Flamary <remi.flamary@unice.fr> # # License: MIT License # sphinx_gallery_thumbnail_number = 2 
import os from pathlib import Path import numpy as np from matplotlib import pyplot as plt import ot 

Generate data

n = 1000 d = 2 sigma = 0.1 rng = np.random.RandomState(42) # source samples angles = rng.rand(n, 1) * 2 * np.pi xs = np.concatenate((np.sin(angles), np.cos(angles)), axis=1) + sigma * rng.randn(n, 2) xs[: n // 2, 1] += 2 # target samples anglet = rng.rand(n, 1) * 2 * np.pi xt = np.concatenate((np.sin(anglet), np.cos(anglet)), axis=1) + sigma * rng.randn(n, 2) xt[: n // 2, 1] += 2 A = np.array([[1.5, 0.7], [0.7, 1.5]]) b = np.array([[4, 2]]) xt = xt.dot(A) + b 

Plot data

plt.figure(1, (5, 5)) plt.plot(xs[:, 0], xs[:, 1], "+") plt.plot(xt[:, 0], xt[:, 1], "o") plt.legend(("Source", "Target")) plt.title("Source and target distributions") plt.show() 
Source and target distributions

Estimate linear mapping and transport

# Gaussian (linear) Monge mapping estimation Ae, be = ot.gaussian.empirical_bures_wasserstein_mapping(xs, xt) xst = xs.dot(Ae) + be # Gaussian (linear) GW mapping estimation Agw, bgw = ot.gaussian.empirical_gaussian_gromov_wasserstein_mapping(xs, xt) xstgw = xs.dot(Agw) + bgw 

Plot transported samples

plt.figure(2, (10, 5)) plt.clf() plt.subplot(1, 2, 1) plt.plot(xs[:, 0], xs[:, 1], "+") plt.plot(xt[:, 0], xt[:, 1], "o") plt.plot(xst[:, 0], xst[:, 1], "+") plt.legend(("Source", "Target", "Transp. Monge"), loc=0) plt.title("Transported samples with Monge") plt.subplot(1, 2, 2) plt.plot(xs[:, 0], xs[:, 1], "+") plt.plot(xt[:, 0], xt[:, 1], "o") plt.plot(xstgw[:, 0], xstgw[:, 1], "+") plt.legend(("Source", "Target", "Transp. GW"), loc=0) plt.title("Transported samples with Gaussian GW") plt.show() 
Transported samples with Monge, Transported samples with Gaussian GW

Load image data

def im2mat(img):  """Converts and image to matrix (one pixel per line)""" return img.reshape((img.shape[0] * img.shape[1], img.shape[2])) def mat2im(X, shape):  """Converts back a matrix to an image""" return X.reshape(shape) def minmax(img): return np.clip(img, 0, 1) # Loading images this_file = os.path.realpath("__file__") data_path = os.path.join(Path(this_file).parent.parent.parent, "data") I1 = plt.imread(os.path.join(data_path, "ocean_day.jpg")).astype(np.float64) / 256 I2 = plt.imread(os.path.join(data_path, "ocean_sunset.jpg")).astype(np.float64) / 256 X1 = im2mat(I1) X2 = im2mat(I2) 

Estimate mapping and adapt

# Monge mapping mapping = ot.da.LinearTransport() mapping.fit(Xs=X1, Xt=X2) xst = mapping.transform(Xs=X1) xts = mapping.inverse_transform(Xt=X2) I1t = minmax(mat2im(xst, I1.shape)) I2t = minmax(mat2im(xts, I2.shape)) # gaussian GW mapping mapping = ot.da.LinearGWTransport() mapping.fit(Xs=X1, Xt=X2) xstgw = mapping.transform(Xs=X1) xtsgw = mapping.inverse_transform(Xt=X2) I1tgw = minmax(mat2im(xstgw, I1.shape)) I2tgw = minmax(mat2im(xtsgw, I2.shape)) 

Plot transformed images

plt.figure(3, figsize=(14, 7)) plt.subplot(2, 3, 1) plt.imshow(I1) plt.axis("off") plt.title("Im. 1") plt.subplot(2, 3, 4) plt.imshow(I2) plt.axis("off") plt.title("Im. 2") plt.subplot(2, 3, 2) plt.imshow(I1t) plt.axis("off") plt.title("Monge mapping Im. 1") plt.subplot(2, 3, 5) plt.imshow(I2t) plt.axis("off") plt.title("Inverse Monge mapping Im. 2") plt.subplot(2, 3, 3) plt.imshow(I1tgw) plt.axis("off") plt.title("Gaussian GW mapping Im. 1") plt.subplot(2, 3, 6) plt.imshow(I2tgw) plt.axis("off") plt.title("Inverse Gaussian GW mapping Im. 2") 
Im. 1, Im. 2, Monge mapping Im. 1, Inverse Monge mapping Im. 2, Gaussian GW mapping Im. 1, Inverse Gaussian GW mapping Im. 2
Text(0.5, 1.0, 'Inverse Gaussian GW mapping Im. 2') 

Total running time of the script: (0 minutes 1.293 seconds)

Gallery generated by Sphinx-Gallery