Note
Go to the end to download the full example code.
Linear OT mapping estimation
Note
Example updated in release: 0.9.1.
# Author: Remi Flamary <remi.flamary@unice.fr> # # License: MIT License # sphinx_gallery_thumbnail_number = 2 import os from pathlib import Path import numpy as np from matplotlib import pyplot as plt import ot Generate data
n = 1000 d = 2 sigma = 0.1 rng = np.random.RandomState(42) # source samples angles = rng.rand(n, 1) * 2 * np.pi xs = np.concatenate((np.sin(angles), np.cos(angles)), axis=1) + sigma * rng.randn(n, 2) xs[: n // 2, 1] += 2 # target samples anglet = rng.rand(n, 1) * 2 * np.pi xt = np.concatenate((np.sin(anglet), np.cos(anglet)), axis=1) + sigma * rng.randn(n, 2) xt[: n // 2, 1] += 2 A = np.array([[1.5, 0.7], [0.7, 1.5]]) b = np.array([[4, 2]]) xt = xt.dot(A) + b Plot data
plt.figure(1, (5, 5)) plt.plot(xs[:, 0], xs[:, 1], "+") plt.plot(xt[:, 0], xt[:, 1], "o") plt.legend(("Source", "Target")) plt.title("Source and target distributions") plt.show() 
Estimate linear mapping and transport
Plot transported samples
plt.figure(2, (10, 5)) plt.clf() plt.subplot(1, 2, 1) plt.plot(xs[:, 0], xs[:, 1], "+") plt.plot(xt[:, 0], xt[:, 1], "o") plt.plot(xst[:, 0], xst[:, 1], "+") plt.legend(("Source", "Target", "Transp. Monge"), loc=0) plt.title("Transported samples with Monge") plt.subplot(1, 2, 2) plt.plot(xs[:, 0], xs[:, 1], "+") plt.plot(xt[:, 0], xt[:, 1], "o") plt.plot(xstgw[:, 0], xstgw[:, 1], "+") plt.legend(("Source", "Target", "Transp. GW"), loc=0) plt.title("Transported samples with Gaussian GW") plt.show() 
Load image data
def im2mat(img): """Converts and image to matrix (one pixel per line)""" return img.reshape((img.shape[0] * img.shape[1], img.shape[2])) def mat2im(X, shape): """Converts back a matrix to an image""" return X.reshape(shape) def minmax(img): return np.clip(img, 0, 1) # Loading images this_file = os.path.realpath("__file__") data_path = os.path.join(Path(this_file).parent.parent.parent, "data") I1 = plt.imread(os.path.join(data_path, "ocean_day.jpg")).astype(np.float64) / 256 I2 = plt.imread(os.path.join(data_path, "ocean_sunset.jpg")).astype(np.float64) / 256 X1 = im2mat(I1) X2 = im2mat(I2) Estimate mapping and adapt
# Monge mapping mapping = ot.da.LinearTransport() mapping.fit(Xs=X1, Xt=X2) xst = mapping.transform(Xs=X1) xts = mapping.inverse_transform(Xt=X2) I1t = minmax(mat2im(xst, I1.shape)) I2t = minmax(mat2im(xts, I2.shape)) # gaussian GW mapping mapping = ot.da.LinearGWTransport() mapping.fit(Xs=X1, Xt=X2) xstgw = mapping.transform(Xs=X1) xtsgw = mapping.inverse_transform(Xt=X2) I1tgw = minmax(mat2im(xstgw, I1.shape)) I2tgw = minmax(mat2im(xtsgw, I2.shape)) Plot transformed images
plt.figure(3, figsize=(14, 7)) plt.subplot(2, 3, 1) plt.imshow(I1) plt.axis("off") plt.title("Im. 1") plt.subplot(2, 3, 4) plt.imshow(I2) plt.axis("off") plt.title("Im. 2") plt.subplot(2, 3, 2) plt.imshow(I1t) plt.axis("off") plt.title("Monge mapping Im. 1") plt.subplot(2, 3, 5) plt.imshow(I2t) plt.axis("off") plt.title("Inverse Monge mapping Im. 2") plt.subplot(2, 3, 3) plt.imshow(I1tgw) plt.axis("off") plt.title("Gaussian GW mapping Im. 1") plt.subplot(2, 3, 6) plt.imshow(I2tgw) plt.axis("off") plt.title("Inverse Gaussian GW mapping Im. 2") 
Text(0.5, 1.0, 'Inverse Gaussian GW mapping Im. 2') Total running time of the script: (0 minutes 1.293 seconds)