OpenAI compatibility
February 8, 2024

Ollama now has built-in compatibility with the OpenAI Chat Completions API, making it possible to use more tooling and applications with Ollama locally.
Setup
Start by downloading Ollama and pulling a model such as Llama 2 or Mistral:
ollama pull llama2 Usage
cURL
To invoke Ollama’s OpenAI compatible API endpoint, use the same OpenAI format and change the hostname to http://localhost:11434:
curl http://localhost:11434/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "llama2", "messages": [ { "role": "system", "content": "You are a helpful assistant." }, { "role": "user", "content": "Hello!" } ] }' OpenAI Python library
from openai import OpenAI client = OpenAI( base_url = 'http://localhost:11434/v1', api_key='ollama', # required, but unused ) response = client.chat.completions.create( model="llama2", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": "Who won the world series in 2020?"}, {"role": "assistant", "content": "The LA Dodgers won in 2020."}, {"role": "user", "content": "Where was it played?"} ] ) print(response.choices[0].message.content) OpenAI JavaScript library
import OpenAI from 'openai' const openai = new OpenAI({ baseURL: 'http://localhost:11434/v1', apiKey: 'ollama', // required but unused }) const completion = await openai.chat.completions.create({ model: 'llama2', messages: [{ role: 'user', content: 'Why is the sky blue?' }], }) console.log(completion.choices[0].message.content) Examples
Vercel AI SDK
The Vercel AI SDK is an open-source library for building conversational streaming applications. To get started, use create-next-app to clone the example repo:
npx create-next-app --example https://github.com/vercel/ai/tree/main/examples/next-openai example cd example Then make the following two edits in app/api/chat/route.ts to update the chat example to use Ollama:
const openai = new OpenAI({ baseURL: 'http://localhost:11434/v1', apiKey: 'ollama', }); const response = await openai.chat.completions.create({ model: 'llama2', stream: true, messages, }); Next, run the app:
npm run dev Finally, open the example app in your browser at http://localhost:3000:
Autogen
Autogen is a popular open-source framework by Microsoft for building multi-agent applications. For this, example we’ll use the Code Llama model:
ollama pull codellama Install Autogen:
pip install pyautogen Then create a Python script example.py to use Ollama with Autogen:
from autogen import AssistantAgent, UserProxyAgent config_list = [ { "model": "codellama", "base_url": "http://localhost:11434/v1", "api_key": "ollama", } ] assistant = AssistantAgent("assistant", llm_config={"config_list": config_list}) user_proxy = UserProxyAgent("user_proxy", code_execution_config={"work_dir": "coding", "use_docker": False}) user_proxy.initiate_chat(assistant, message="Plot a chart of NVDA and TESLA stock price change YTD.") Lastly, run the example to have the assistant write the code to plot a chart:
python example.py More to come
This is initial experimental support for the OpenAI API. Future improvements under consideration include:
- Embeddings API
- Function calling
- Vision support
- Logprobs
GitHub issues are welcome! For more information, see the OpenAI compatibility docs.