Widget#
The ITable widget depends on AnyWidget - a great widget development framework! You can install it with
pip install itables[widget] The ITable class accepts the same options as the show method, but the df argument is optional.
from itables.sample_pandas_dfs import get_dict_of_test_dfs from itables.widget import ITable df = get_dict_of_test_dfs()["int_float_str"] table = ITable(df, selected_rows=[0, 2, 5], select=True) table Tip
The table shown above does not reflect the initial row selection. This is because the ITable widget was updated with more row selection commands, see below.
The selected_rows traits#
The selected_rows attribute of the ITable object provides a view on the rows that have been selected in the table (remember to pass select=True to activate the row selection). You can use it to either retrieve or change the current row selection:
table.selected_rows [0, 2, 5] table.selected_rows = [3, 4] The df property#
Use it to retrieve the table data:
table.df.iloc[table.selected_rows] | int | float | str | |
|---|---|---|---|
| 3 | 3 | 4.848485 | d |
| 4 | 4 | 4.797980 | e |
or to update it
table.df = df.head(6) Tip
ITable raises an IndexError if the selected_rows are not consistent with the data. If you need to update both simultaneously, use table.update(df, selected_rows=...), see below.
The caption, style and classes traits#
You can update these traits from Python, e.g.
table.caption = "numbers and strings" The update method#
Last but not least, you can update the ITable arguments simultaneously using the update method:
table.update(df.head(20), selected_rows=[7, 8]) Using HTML#
An alternative to the widget, if you only want to display the table, is the show function. Below is an example in which we use show to display a different table depending on the value of a drop-down component:
import ipywidgets as widgets from itables import show from itables.sample_dfs import get_dict_of_test_dfs def use_show_in_interactive_output(table_name: str): show( sample_dfs[table_name], caption=table_name, ) sample_dfs = get_dict_of_test_dfs() table_selector = widgets.Dropdown(options=sample_dfs.keys(), value="int_float_str") out = widgets.interactive_output( use_show_in_interactive_output, {"table_name": table_selector} ) widgets.VBox([table_selector, out])