Shapes.cs
// // This code is part of Document Solutions for PDF demos. // Copyright (c) MESCIUS inc. All rights reserved. // using System; using System.IO; using System.Drawing; using System.Numerics; using System.Linq; using GrapeCity.Documents.Pdf; using GrapeCity.Documents.Text; using GrapeCity.Documents.Drawing; using GCDRAW = GrapeCity.Documents.Drawing; namespace DsPdfWeb.Demos { // Demonstrates how various shapes can be drawn in DsPdf. // Shows how simple shapes can be combined to produce more complex shapes. // Simple graphics transformations are used to draw some shapes. public class Shapes { // Helper method to draw a polygon and a caption beneath it. // Can also be used to just calculate the points without actual drawing. // startAngle is for the first point, clockwise from (1,0). private PointF[] DrawPolygon(GcGraphics g, PointF center, float r, int n, float startAngle, GCDRAW.Pen pen, string caption = null) { var pts = new PointF[n]; for (int i = 0; i < n; ++i) pts[i] = new PointF(center.X + (float)(r * Math.Cos(startAngle + 2 * Math.PI * i / n)), center.Y + (float)(r * Math.Sin(startAngle + 2 * Math.PI * i / n))); if (pen != null) g.DrawPolygon(pts, pen); if (!string.IsNullOrEmpty(caption)) DrawCaption(g, center, r, caption); return pts; } // Helper method to draw a caption beneath a shape: private static void DrawCaption(GcGraphics g, PointF center, float r, string caption) { g.DrawString(caption, new TextFormat() { Font = StandardFonts.Times, FontSize = 10, }, new RectangleF(center.X - r, center.Y + r, r * 2, 24), TextAlignment.Center, ParagraphAlignment.Center, false); } // Main entry point. public int CreatePDF(Stream stream) { var doc = new GcPdfDocument(); var page = doc.Pages.Add(); var g = page.Graphics; // Document header: g.DrawString("Shapes", new TextFormat() { Font = StandardFonts.TimesBold, FontSize = 14, Underline = true, }, new RectangleF(PointF.Empty, new SizeF(page.Size.Width, 44)), TextAlignment.Center, ParagraphAlignment.Far); // Pen used to draw shapes: var pen = new GCDRAW.Pen(Color.Orange, 1); pen.LineJoin = PenLineJoin.Round; int fill = 100; // Surfaces fill alpha // Set up the helper layout grid: var grid = new { Cols = 3, Rows = 5, MarginX = 72, MarginY = 36, Radius = 36, StepX = (page.Size.Width - 144) / 3, StepY = (page.Size.Height - 72) / 5, }; // Insertion point of the next figure's center: var startIp = new PointF(grid.MarginX + grid.StepX / 2, grid.MarginY + grid.StepY / 2 + 10); var ip = startIp; // Debug code to show the layout grid: /* var ipp = ip; for (int i = 0; i < grid.Cols; ++i) { ipp.Y = ip.Y; for (int j = 0; j < grid.Rows; ++j) { g.DrawRectangle(new RectangleF(ipp.X - grid.Radius, ipp.Y - grid.Radius, grid.Radius * 2, grid.Radius * 2), Color.LightGreen, 0.5f); ipp.Y += grid.StepY; } ipp.X += grid.StepX; } */ // Circle: g.DrawEllipse(new RectangleF(ip.X - grid.Radius, ip.Y - grid.Radius, grid.Radius * 2, grid.Radius * 2), pen); DrawCaption(g, ip, grid.Radius, "Circle"); ip.X += grid.StepX; // Ellipse: g.DrawEllipse(new RectangleF(ip.X - grid.Radius * 1.4f, ip.Y - grid.Radius / 2, grid.Radius * 2 * 1.4f, grid.Radius), pen); DrawCaption(g, ip, grid.Radius, "Ellipse"); ip.X += grid.StepX; // Cylinder: float radX = grid.Radius / 1.4f; float radY = grid.Radius / 6; float height = grid.Radius * 1.8f; g.DrawEllipse(new RectangleF(ip.X - radX, ip.Y - height / 2, radX * 2, radY * 2), pen); g.FillEllipse(new RectangleF(ip.X - radX, ip.Y + height / 2 - radY * 2, radX * 2, radY * 2), Color.FromArgb(fill, pen.Color)); g.DrawEllipse(new RectangleF(ip.X - radX, ip.Y + height / 2 - radY * 2, radX * 2, radY * 2), pen); g.DrawLine(new PointF(ip.X - radX, ip.Y - height / 2 + radY), new PointF(ip.X - radX, ip.Y + height / 2 - radY), pen); g.DrawLine(new PointF(ip.X + radX, ip.Y - height / 2 + radY), new PointF(ip.X + radX, ip.Y + height / 2 - radY), pen); DrawCaption(g, ip, grid.Radius, "Cylinder"); ip.X = startIp.X; ip.Y += grid.StepY; pen.Color = Color.Indigo; // Square: DrawPolygon(g, ip, grid.Radius, 4, (float)-Math.PI / 4, pen, "Square"); ip.X += grid.StepX; // Rectangle: float rectQx = 1.4f; float rectQy = 0.6f; var rect = new RectangleF(ip.X - grid.Radius * rectQx, ip.Y - grid.Radius * rectQy, grid.Radius * 2 * rectQx, grid.Radius * 2 * rectQy); g.DrawRectangle(rect, pen); DrawCaption(g, ip, grid.Radius, "Rectangle"); ip.X += grid.StepX; // Cube: float cubex = 6; var cubePtsFar = DrawPolygon(g, new PointF(ip.X - cubex, ip.Y - cubex), grid.Radius, 4, (float)-Math.PI / 4, pen); var cubePtsNear = DrawPolygon(g, new PointF(ip.X + cubex, ip.Y + cubex), grid.Radius, 4, (float)-Math.PI / 4, pen); g.DrawLine(cubePtsFar[0], cubePtsNear[0], pen); g.DrawLine(cubePtsFar[1], cubePtsNear[1], pen); g.DrawLine(cubePtsFar[2], cubePtsNear[2], pen); g.DrawLine(cubePtsFar[3], cubePtsNear[3], pen); g.FillPolygon(new PointF[] { cubePtsFar[1], cubePtsFar[2], cubePtsNear[2], cubePtsNear[1], }, Color.FromArgb(fill, pen.Color)); DrawCaption(g, ip, grid.Radius, "Cube"); ip.X = startIp.X; ip.Y += grid.StepY; pen.Color = Color.DarkGreen; // Pentagon: DrawPolygon(g, ip, grid.Radius, 5, (float)-Math.PI / 2, pen, "Pentagon"); ip.X += grid.StepX; // Hexagon: // For sample sake, we apply a transform to make the hexagon wider and shorter: g.Transform = Matrix3x2.CreateScale(1.4f, 0.8f) * Matrix3x2.CreateTranslation(ip.X, ip.Y); DrawPolygon(g, PointF.Empty, grid.Radius, 6, 0, pen, null); g.Transform = Matrix3x2.Identity; DrawCaption(g, ip, grid.Radius, "Hexagon"); ip.X += grid.StepX; // Octagon: DrawPolygon(g, ip, grid.Radius, 8, (float)-Math.PI / 8, pen, "Octagon"); ip.X = startIp.X; ip.Y += grid.StepY; pen.Color = Color.DarkRed; // Triangle: DrawPolygon(g, ip, grid.Radius, 3, (float)-Math.PI / 2, pen, "Triangle"); ip.X += grid.StepX; // Filled pentagram: var pts = DrawPolygon(g, ip, grid.Radius, 5, (float)-Math.PI / 2, pen, "Pentagram"); pts = new PointF[] { pts[0], pts[2], pts[4], pts[1], pts[3], }; g.FillPolygon(pts, Color.FromArgb(fill, pen.Color)); g.DrawPolygon(pts, pen); ip.X += grid.StepX; // Set up a simple kind of oblique projection to draw a pyramid: var angle = Math.PI / 6; float s = (float)Math.Sin(angle); float c = (float)Math.Cos(angle); Func<float, float, float, PointF> project = (x_, y_, z_) => new PointF(x_ - c * y_ * 0.5f, -(z_ - s * y_ * 0.5f)); Func<Vector3, PointF> p3d = v_ => project(v_.X, v_.Y, v_.Z); float hedge = grid.Radius; // 1/2 edge // Debug - draw the 3 axis: /* g.DrawLine(project(0, 0, 0), project(100, 0, 0), Color.Red); g.DrawLine(project(0, 0, 0), project(0, 100, 0), Color.Green); g.DrawLine(project(0, 0, 0), project(0, 0, 100), Color.Blue); */ // 3d points forming a square pyramid: var pts3d = new Vector3[] { new (-hedge, -hedge, 0), new (hedge, -hedge, 0), new (hedge, hedge, 0), new (-hedge, hedge, 0), new (0, 0, hedge * 2), }; // Project the points to draw the pyramid: pts = pts3d.Select(v_ => p3d(v_)).ToArray(); g.Transform = Matrix3x2.CreateTranslation(ip.X, ip.Y + hedge * 0.7f); // Visible edges: g.DrawPolygon(new PointF[] { pts[4], pts[1], pts[2], pts[3], pts[4], pts[2] }, pen); // Invisible edges: pen.Width /= 2; pen.Color = Color.FromArgb(fill, pen.Color); g.DrawLine(pts[0], pts[4], pen); g.DrawLine(pts[0], pts[1], pen); g.DrawLine(pts[0], pts[3], pen); g.FillPolygon(pts.Take(4).ToArray(), pen.Color); // g.Transform = Matrix3x2.Identity; DrawCaption(g, ip, grid.Radius, "Pyramid"); ip.X = startIp.X; ip.Y += grid.StepY; pen.Width *= 2; pen.Color = Color.Green; // Cone: float baseh = grid.Radius * 0.3f; pts = DrawPolygon(g, ip, grid.Radius, 3, (float)-Math.PI / 2, null, "Cone"); g.DrawLines(new PointF[] { pts[2], pts[0], pts[1] }, pen); rect = new RectangleF(pts[2].X, pts[2].Y - baseh / 2, pts[1].X - pts[2].X, baseh); g.FillEllipse(rect, Color.FromArgb(fill, pen.Color)); g.DrawEllipse(rect, pen); ip.X += grid.StepX; // Parallelogram (use graphics.Transform on a rectangle): rect = new RectangleF(-grid.Radius * rectQx, -grid.Radius * rectQy, grid.Radius * 2 * rectQx, grid.Radius * 2 * rectQy); g.Transform = Matrix3x2.CreateSkew((float)Math.PI / 6, 0) * Matrix3x2.CreateTranslation(ip.X, ip.Y); g.DrawRectangle(rect, pen); g.Transform = Matrix3x2.Identity; DrawCaption(g, ip, grid.Radius, "Parallelogram"); ip.X += grid.StepX; // Trapezoid (use DrawPolygon to just get the points of the square): float dx = 10; pts = DrawPolygon(g, ip, grid.Radius, 4, (float)-Math.PI / 4, null, "Trapezoid"); pts[0].X -= dx; pts[1].X += dx; pts[2].X -= dx; pts[3].X += dx; g.DrawPolygon(pts, pen); // Done: doc.Save(stream); return doc.Pages.Count; } } }