As shown in the citation in the comment of @jvc, the inverse of $A_N$ is tridiagonal, \begin{align}\tag{1}\label{eq:1} A_N^{-1}= \begin{pmatrix} 2&-1\\ -1&2&-1\\ &-1&\ddots&\ddots\\ &&\ddots&2&-1\\ &&&-1&1\\ \end{pmatrix} \, , \end{align} with characteristic polynomial \begin{align} \tag{2a}\label{eq:2a} P_N(\lambda)&=\det(A_N^{-1}-\lambda \,1) \\ \tag{2b}\label{eq:2b} &=\langle 1,0| \begin{pmatrix}2-\lambda&-1\\1&0\end{pmatrix}^{N-1} |1-\lambda,0\rangle \\ \tag{2c}\label{eq:2c} &=\langle 1,0| \begin{pmatrix}2\cos\varphi&-1\\1&0\end{pmatrix}^{N-1} |1-4\sin^2\tfrac\varphi 2,0\rangle \\ \tag{2d}\label{eq:2d} &=\frac 1{\sin\varphi}\, \langle 1,0| \begin{pmatrix}\sin[N\varphi]&\sin[(N-1)\varphi]\\ \sin[(N-1)\varphi]&\sin[(N-2)\varphi]\end{pmatrix} |1-4\sin^2\tfrac\varphi 2,0\rangle \\ \tag{2e}\label{eq:2e} &=\frac{\cos\big[(N+\tfrac 1 2)\varphi\big]}{\cos \frac \varphi 2}\,. \end{align} Here we used the parametrization \begin{align}\tag{3}\label{eq:3} 2\cos\varphi=2-\lambda \, . \end{align} The eigenvalues $\lambda_\mu$ of $A_N^{-1}$ are the zeroes of $P_N(\lambda)$ and therefore \begin{align} \tag{4}\label{eq:4} \lambda_\mu = 4\sin^2 \frac{\varphi_\mu}{2}\,, \quad \varphi_\mu=2\pi\frac{2\mu + 1}{2N + 1}\,, \quad \mu = 0,1,\ldots,N-1 \, , \end{align} and the eigenvalues of $A_N$ are $\lambda_\mu^{-1}$.
The construction of the eigenvectors is straightforward, see, e.g., the other answer which just appeared while I was typing... I'll cite the (unnormalized) eigenvectors from Federico's answer, \begin{align} \tag{5}\label{eq:5} (x_\mu)_j = \sin\left(j\pi\frac{2\mu+1}{2N+1}\right) \, . \end{align} Merry Christmas to you all!