A counterexample for random variable with nonseparable range.
Let $\omega_1$ be the smallest uncountable ordinal. Let $\Omega = [0,\omega_1)$, the set of countable ordinals, with the order topology. Then the Banach space $B = C[0,\omega_1)$ will be used. Note: every real-avalued continuous function on $[0,\omega_1)$ is bounded. Moreover, $$ \lim_{\alpha \to \omega_1} f(\alpha) $$ exists for every $f \in B$ and $\phi : B \to \mathbb R$ defined by $$ \phi(f) = \lim_{\alpha \to \omega_1} f(\alpha) $$ is a bounded linear functional. [The Stone-Cech compactification of $\Omega$ is the one-point compactification of $\Omega$.]
Our measure space is $(\Omega,\mathcal F, \mathbb P)$, where $\mathcal F$ is the countable-cocountable sigma-algebra, and $\mathbb P$ is $0$ on countable sets and $1$ on cocountable sets. Note: if $f \in C[0,\omega_1)$, then the integral is $$ \int f(\alpha)\;\mathbb P(d\alpha) = \lim_{\alpha \to \omega_1} f(\alpha) = \phi(f) . $$
Define $F : \Omega \to B$ by $F(\alpha) = \mathbf1_{(\alpha,\omega_1)} $, the indicator function of the interval $(\alpha,\omega_1)$, which is a clopen set.
We will show that that there is no $\mathbb E[F] \in B$ with the property $\mathbb E[R\circ F] = R\big(\mathbb E[F]\big)$ for all bounded linear functionals $R : B \to \mathbb R$. Suppose it does exist.
Fix $\xi \in [0,\omega_1)$. Then $f \mapsto f(\xi)$ is a bounded linear functional, and $$ F(\alpha)(\xi) = \begin{cases} 1,\quad \alpha < \xi \\ 0,\quad \alpha \ge \xi \end{cases} $$ and thus $$ 0 = \lim_{\alpha \to \omega_1} F(\alpha)(\xi) = \int F(\alpha)(\xi)\;\mathbb P(d\alpha) = \left(\mathbb E[F]\right)(\xi) $$ This holds for all $\xi$ so $\mathbb E[F] = \mathbf 0$, the zero element of $B$.
On the other hand $\phi$ defined above is a bounded linear functional, and $$ \phi(F(\alpha)) = \lim_{\xi \to \omega_1}F(\alpha)(\xi) = 1 $$ for all $\alpha$.
So $$ \mathbb E[\phi\circ F] =\int\phi(F(\alpha))\;\mathbb P(d\alpha) =\int 1\;\mathbb P(d\alpha) = 1 . $$ This is not equal to $\phi\big(\mathbb E[F]\big) = \phi(\mathbf 0) = 0$.
.....
Now I'm wondering if $F$ is Borel.