7
$\begingroup$

Let $f\in \mathbb{R}[x_1,x_2,x_3,x_4]$ defined by $$f_a(x_1,x_2,x_3,x_4)=\prod_{1\leqslant i<j\leqslant4}(x_i-x_j)^{2a_{ij}}$$ where $a=(a_{12},a_{13},a_{14},a_{23},a_{24},a_{34})\in \mathbb{N}^6$. Define a $4\times4$ matrix $A_f$ as follow: $$A_{f_a}=\begin{bmatrix} L(1) & L(\frac{x_2}{x_1}) & L(\frac{x_4}{x_3}) & L(\frac{x_2x_4}{x_1x_3})\\ L(\frac{x_1}{x_2}) & L(1) & L(\frac{x_1x_4}{x_2x_3}) & L(\frac{x_4}{x_3})\\ L(\frac{x_3}{x_4}) & L(\frac{x_2x_3}{x_1x_4}) & L(1) & L(\frac{x_2}{x_1})\\ L(\frac{x_1x_3}{x_2x_4}) & L(\frac{x_3}{x_4}) & L(\frac{x_1}{x_2}) & L(1) \end{bmatrix}$$ where $L(\frac{x_{i_1}\cdots x_{i_k}}{x_{j_1}\cdots x_{j_k}})$ denotes the coefficient of $$\left(\prod_{1\leqslant i<j\leqslant4}(x_ix_j)^{a_{ij}}\right)\frac{x_{i_1}\cdots x_{i_k}}{x_{j_1}\cdots x_{j_k}}$$ in the expansion of $f$.

For example, when $a_1=(a,0,0,0,0,b)$, \begin{align} f_{a_1}(x_1,x_2,x_3,x_4)&=(x_1-x_2)^{2a}(x_3-x_4)^{2b},\\ \\ (-1)^{a+b}A_{f_{a_1}}&= \begin{bmatrix} \binom{2a}{a}\binom{2b}{b} & -\binom{2a}{a-1}\binom{2b}{b} & -\binom{2a}{a}\binom{2b}{b-1} & \binom{2a}{a-1}\binom{2b}{b-1}\\ -\binom{2a}{a-1}\binom{2b}{b} & \binom{2a}{a}\binom{2b}{b} & \binom{2a}{a-1}\binom{2b}{b-1} & -\binom{2a}{a}\binom{2b}{b-1}\\ -\binom{2a}{a}\binom{2b}{b-1} & \binom{2a}{a-1}\binom{2b}{b-1} & \binom{2a}{a}\binom{2b}{b} & -\binom{2a}{a-1}\binom{2b}{b}\\ \binom{2a}{a-1}\binom{2b}{b-1} & -\binom{2a}{a}\binom{2b}{b-1} & -\binom{2a}{a-1}\binom{2b}{b} & \binom{2a}{a}\binom{2b}{b} \end{bmatrix}. \end{align} It is not difficult to verify that the determinant of $A_{f_{a_1}}$ is nonzero. In fact,$$\det(A_{f_{a_1}})=\binom{2a}{a}^4\binom{2b}{b}^4\frac{(2a+1)^2(2b+1)^2}{(a+1)^4(b+1)^4}.$$ Moreover, I verified that $\det(A_{f_a})\neq0$ for many simple $a\in \mathbb{N}^6$.

My question

Does $\det(A_{f_a})\neq0$ hold for all $a\in \mathbb{N}^6$? Is there any significance for the matrix $A_{f_a}$? Any idea is welcome!

$\endgroup$
1
  • 3
    $\begingroup$ What is the background-motivation_ $\endgroup$ Commented Oct 6, 2018 at 21:22

1 Answer 1

10
$\begingroup$

For a given monomial $Y=\frac{x_{i_1}\cdots x_{i_k}}{x_{j_1}\cdots x_{j_k}}$ the coefficient $L(Y)$ multiplied by the constant $(-1)^{\sum_{i<j} a_{ij}}$ equals $$[Y]\prod_{i,j}(1-x_i/x_j)^{a_{ij}}=\int Y^{-1}d\mu,$$ where $d\mu$ is the measure on the $4$-dimensional torus $\mathbb{T}^4=\{(x_1,x_2,x_3,x_4)\in \mathbb{C}^4:|x_1|=|x_2|=|x_3|=|x_4|=1\}$ which density w.r.t. normalized Lebesgue measure equals to $\prod_{i,j}(1-x_i/x_j)^{a_{ij}}$ (the key observation is that this is always real and almost always positive). Your matrix is then (up to aforementioned sign) Gram matrix of the functions $1,x_2/x_1,x_4/x_3,x_2x_4/x_1x_3$ in $L^2(\mu)$. They are linearly independent, hence the determinant is strictly positive.

$\endgroup$
3
  • $\begingroup$ Fedor Petrov: Thank you very much for your help! I do not quite understand the equality $$[Y]\prod_{i,j}(1-x_i/x_j)^{a_{ij}}=\int Y^{-1}d\mu.$$ What does $[Y]$ mean? Would you please explain it in more detail? Thank you! $\endgroup$ Commented Oct 7, 2018 at 6:35
  • $\begingroup$ as usual $[Y]F$ denotes the coefficient of monomial $Y$ in expression $F$ $\endgroup$ Commented Oct 7, 2018 at 7:16
  • $\begingroup$ Fedor Petrov: I see. Thank you very much! $\endgroup$ Commented Oct 7, 2018 at 17:24

You must log in to answer this question.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.