Skip to main content
added 1 character in body
Source Link

I think I found out.

$$\displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})^k=\sum_{m_1,...,m_4}\frac{k!}{m_1!,...m_4!}1^{m_1}p^{^-(s+1)m_2}p^{-(t+1)m_3}p^{-(s+t+1)m_4} $$

Right here we get $ \displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})$ and rest of it is $O(1/p^2)$.

Since

$$ \displaystyle \frac{(1-p^{-(s+1)})(1-p^{-(t+1)})}{(1-p^{-(2+s+t)})}=(1-p^{-(s+1)})(1-p^{-(t+1)})(1+p^{-(2+s+t)}+O(1/p^2). $$$$ \displaystyle \frac{(1-p^{-(s+1)})(1-p^{-(t+1)})}{(1-p^{-(2+s+t)})}=(1-p^{-(s+1)})(1-p^{-(t+1)})(1+p^{-(2+s+t)}+O(1/p^2)). $$

equation holds.

I think I found out.

$$\displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})^k=\sum_{m_1,...,m_4}\frac{k!}{m_1!,...m_4!}1^{m_1}p^{^-(s+1)m_2}p^{-(t+1)m_3}p^{-(s+t+1)m_4} $$

Right here we get $ \displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})$ and rest of it is $O(1/p^2)$.

Since

$$ \displaystyle \frac{(1-p^{-(s+1)})(1-p^{-(t+1)})}{(1-p^{-(2+s+t)})}=(1-p^{-(s+1)})(1-p^{-(t+1)})(1+p^{-(2+s+t)}+O(1/p^2). $$

equation holds.

I think I found out.

$$\displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})^k=\sum_{m_1,...,m_4}\frac{k!}{m_1!,...m_4!}1^{m_1}p^{^-(s+1)m_2}p^{-(t+1)m_3}p^{-(s+t+1)m_4} $$

Right here we get $ \displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})$ and rest of it is $O(1/p^2)$.

Since

$$ \displaystyle \frac{(1-p^{-(s+1)})(1-p^{-(t+1)})}{(1-p^{-(2+s+t)})}=(1-p^{-(s+1)})(1-p^{-(t+1)})(1+p^{-(2+s+t)}+O(1/p^2)). $$

equation holds.

deleted 22 characters in body
Source Link

I think I found out.

$$\displaystyle (1-\frac{1}{p^{s+1}-\frac{1}{p^{t+1}+\frac{1}{p^{t+s+1}})^k=\sum_{\alpha_1,...,\aplha_4}\frac{k!}{\alpha_1!,...\alpha_4!}1^{\alpha_1}p^{^-(s+1)\alpha_2}p^{-(t+1)\alpha_3}p^{-(s+t+1)\alpha_4} $$$$\displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})^k=\sum_{m_1,...,m_4}\frac{k!}{m_1!,...m_4!}1^{m_1}p^{^-(s+1)m_2}p^{-(t+1)m_3}p^{-(s+t+1)m_4} $$

Right here we get $ \displaystyle (1-\frac{1}{p^{s+1}-\frac{1}{p^{t+1}+\frac{1}{p^{t+s+1}}) and rest of it is $O(1/p^2)$ \displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})$ and rest of it is $O(1/p^2)$.

Since

$$ \displaystyle \frac{(1-p^-{s+1})(1-p^-{t+1}){(1-p^-{2+s+t})}={(1-p^-{s+1})(1-p^-{t+1})(1+p^-{2+s+t}+O(1/p^2). $$$$ \displaystyle \frac{(1-p^{-(s+1)})(1-p^{-(t+1)})}{(1-p^{-(2+s+t)})}=(1-p^{-(s+1)})(1-p^{-(t+1)})(1+p^{-(2+s+t)}+O(1/p^2). $$

equation holds.

I think I found out.

$$\displaystyle (1-\frac{1}{p^{s+1}-\frac{1}{p^{t+1}+\frac{1}{p^{t+s+1}})^k=\sum_{\alpha_1,...,\aplha_4}\frac{k!}{\alpha_1!,...\alpha_4!}1^{\alpha_1}p^{^-(s+1)\alpha_2}p^{-(t+1)\alpha_3}p^{-(s+t+1)\alpha_4} $$

Right here we get $ \displaystyle (1-\frac{1}{p^{s+1}-\frac{1}{p^{t+1}+\frac{1}{p^{t+s+1}}) and rest of it is $O(1/p^2).

Since

$$ \displaystyle \frac{(1-p^-{s+1})(1-p^-{t+1}){(1-p^-{2+s+t})}={(1-p^-{s+1})(1-p^-{t+1})(1+p^-{2+s+t}+O(1/p^2). $$

equation holds.

I think I found out.

$$\displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})^k=\sum_{m_1,...,m_4}\frac{k!}{m_1!,...m_4!}1^{m_1}p^{^-(s+1)m_2}p^{-(t+1)m_3}p^{-(s+t+1)m_4} $$

Right here we get $ \displaystyle (1-\frac{1}{p^{s+1}}-\frac{1}{p^{t+1}}+\frac{1}{p^{t+s+1}})$ and rest of it is $O(1/p^2)$.

Since

$$ \displaystyle \frac{(1-p^{-(s+1)})(1-p^{-(t+1)})}{(1-p^{-(2+s+t)})}=(1-p^{-(s+1)})(1-p^{-(t+1)})(1+p^{-(2+s+t)}+O(1/p^2). $$

equation holds.

Source Link

I think I found out.

$$\displaystyle (1-\frac{1}{p^{s+1}-\frac{1}{p^{t+1}+\frac{1}{p^{t+s+1}})^k=\sum_{\alpha_1,...,\aplha_4}\frac{k!}{\alpha_1!,...\alpha_4!}1^{\alpha_1}p^{^-(s+1)\alpha_2}p^{-(t+1)\alpha_3}p^{-(s+t+1)\alpha_4} $$

Right here we get $ \displaystyle (1-\frac{1}{p^{s+1}-\frac{1}{p^{t+1}+\frac{1}{p^{t+s+1}}) and rest of it is $O(1/p^2).

Since

$$ \displaystyle \frac{(1-p^-{s+1})(1-p^-{t+1}){(1-p^-{2+s+t})}={(1-p^-{s+1})(1-p^-{t+1})(1+p^-{2+s+t}+O(1/p^2). $$

equation holds.