Let $X_n \geq 0$ be an iidi.i.d. sequence with all moments finite. Let $E_n \geq 0$ is abe an increasing sequence of random variables with $\lim_{n \rightarrow \infty}E_n = \infty$$\lim_{n \to \infty}E_n = \infty$. If $Y_n = min\{X_n,E_n\}$.$Y_n = \min\{X_n,E_n\}$, then is $Y_n \neq X_n$ only finitely many times.
Rodrigo de Azevedo
- 2.7k
- 3
- 18
- 37
Became Hot Network Question