The problem is to show that the equation $$iu_t+\Delta u-2\,{\rm Re}\,u=F(u),\qquad\qquad(1)$$$$ iu_t+\Delta u-2\,{\rm Re}\,u=F(u),\label{1}\tag{1} $$ with $u=Vv$, is equivalent to $$i v_t - \sqrt{- \Delta (2-\Delta)} v = - i V^{-1} i F(V v).\qquad\qquad(2)$$$$i v_t - \sqrt{- \Delta (2-\Delta)} v = - i V^{-1} i F(V v).\label{2}\tag{2}$$
Let me decompose $u=u_1+iu_2$ into real and imaginary parts. By definition $$v= [- \Delta (2-\Delta)^{-1}]^{-1/2} u_1 + i u_2,\qquad\qquad(3)$$$$v= [- \Delta (2-\Delta)^{-1}]^{-1/2} u_1 + i u_2,\label{3}\tag{3}$$ hence $$\sqrt{- \Delta (2-\Delta)} v=(2-\Delta)u_1+i\sqrt{- \Delta (2-\Delta)}u_2.\qquad\qquad(4)$$$$\sqrt{- \Delta (2-\Delta)} v=(2-\Delta)u_1+i\sqrt{- \Delta (2-\Delta)}u_2.\label{4}\tag{4}$$
I now start from equation (2) and multiply both sides by $Vi$, $$-u_t+V[i(\Delta-2)u_1+\sqrt{- \Delta (2-\Delta)}u_2]=iF(u).\qquad\qquad(5)$$$$-u_t+V[i(\Delta-2)u_1+\sqrt{- \Delta (2-\Delta)}u_2]=iF(u).\label{5}\tag{5}$$ I note that $$V^{-1}(i\Delta u-2iu_1)=i(\Delta-2)u_1+\sqrt{- \Delta (2-\Delta)}u_2.\qquad\qquad(6)$$$$V^{-1}(i\Delta u-2iu_1)=i(\Delta-2)u_1+\sqrt{- \Delta (2-\Delta)}u_2.\label{6}\tag{6}$$ Substitution of equation (\eqref{6)} into equation (\eqref{5)} gives equation (\eqref{1)}, so indeed, equations (\eqref{1)} and (\eqref{2)} are equivalent.