Skip to main content
Bounty Awarded with 50 reputation awarded by Nicolas
simplified the last expression
Source Link

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=t^b\sum_{j=0}^b\binom bj(1-t)^{-(b+j)} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$ Another observation that might be useful: $$ \sinh(t)\cosh^{a-2}(t)\sinh((a+1)t)=\sum_{b\leqslant a}b!S(a,b)\sinh^{2b}(t) $$$$ \cosh^{a-2}(t)\sinh((a+1)t)=\sum_{b=1}^ab!S(a,b)\sinh^{2b-1}(t) $$

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=t^b\sum_{j=0}^b\binom bj(1-t)^{-(b+j)} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$ Another observation that might be useful: $$ \sinh(t)\cosh^{a-2}(t)\sinh((a+1)t)=\sum_{b\leqslant a}b!S(a,b)\sinh^{2b}(t) $$

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=t^b\sum_{j=0}^b\binom bj(1-t)^{-(b+j)} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$ Another observation that might be useful: $$ \cosh^{a-2}(t)\sinh((a+1)t)=\sum_{b=1}^ab!S(a,b)\sinh^{2b-1}(t) $$

a trigonometric version
Source Link

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=t^b\sum_{j=0}^b\binom bj(1-t)^{-(b+j)} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$ Another observation that might be useful: $$ \sinh(t)\cosh^{a-2}(t)\sinh((a+1)t)=\sum_{b\leqslant a}b!S(a,b)\sinh^{2b}(t) $$

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=t^b\sum_{j=0}^b\binom bj(1-t)^{-(b+j)} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=t^b\sum_{j=0}^b\binom bj(1-t)^{-(b+j)} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$ Another observation that might be useful: $$ \sinh(t)\cosh^{a-2}(t)\sinh((a+1)t)=\sum_{b\leqslant a}b!S(a,b)\sinh^{2b}(t) $$

added 7 characters in body
Source Link

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=\sum_{j=0}^b\binom bj(1-t)^{-j} $$$$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=t^b\sum_{j=0}^b\binom bj(1-t)^{-(b+j)} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=\sum_{j=0}^b\binom bj(1-t)^{-j} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$

Probably this is not very helpful, but it is an explicit expression after all.

I get $$ S(a,b)=\frac{(-1)^{a+1}}{b!}{}_2F_1(-a+1,b+1;2b-a+1;2)\binom b{2b-a}2^{2b-a}. $$ This follows from $$ S(a,b)=\sum_{\ell=2b-a}^b(-1)^\ell\binom{a+\ell-1}{2b-1}\binom b\ell2^\ell, $$ which in turn I derived from the generating function $$ \sum_{a,b}S(a,b)t^au^b=e^{\frac{2-t}{(1-t)^2}tu}. $$

Note also that $S(a,b)$ is defined for other values of $a$ and $b$. In particular, for $a\geqslant2b$ one obtains $$ S(a,b)=\frac{(-1)^b}{b!}{}_2F_1(a,-b;a-2b+1;2)\binom{a-1}{2b-1} $$

In fact, from that generating function, $b!S(a,b)$ is the coefficient of $\left(2t+3t^2+4t^3+5t^4+...\right)^b$ at $t^a$. Here is the table of few of the $b!S(a,b)$: $$ \begin{array}{ccccccccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 12 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 25 & 36 & 16 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 6 & 44 & 102 & 96 & 32 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 70 & 231 & 344 & 240 & 64 & 0 & 0 & 0 & 0 \\ 0 & 8 & 104 & 456 & 952 & 1040 & 576 & 128 & 0 & 0 & 0 \\ 0 & 9 & 147 & 819 & 2241 & 3400 & 2928 & 1344 & 256 & 0 & 0 \\ 0 & 10 & 200 & 1372 & 4712 & 9290 & 11040 & 7840 & 3072 & 512 & 0 \\ 0 & 11 & 264 & 2178 & 9108 & 22363 & 34332 & 33488 & 20224 & 6912 & 1024 \\ \end{array} $$

Here is, in fact, a version that works for any $a$ and $b$, and does not contain any powers of $-1$ or $2$: represent $$ \frac{2-t}{(1-t)^2}=(1-t)^{-2}+(1-t)^{-1}; $$ then from the above we obtain that $b!S(a,b)$ is the coefficient at $t^a$ of the series $t^b((1-t)^{-2}+(1-t)^{-1})^b$, i. e. of $$ t^b\sum_{j=0}^b\binom bj(1-t)^{-2j}(1-t)^{-(b-j)}=t^b\sum_{j=0}^b\binom bj(1-t)^{-(b+j)} $$ It then follows easily that $$ S(a,b)=\frac1{b!}\sum_{j=0}^b\binom bj\binom{a+j-1}{a-b}=\frac1{b!}{}_2\!\!\ F_1(a,-b;b;-1)\binom{a-1}{a-b}. $$

deleted 7 characters in body
Source Link
Loading
A cleaner version
Source Link
Loading
added formula and table
Source Link
Loading
added 2 characters in body
Source Link
Loading
added 1 character in body
Source Link
Loading
Source Link
Loading