Define the complex-variable function $$g(z)=\frac{\sin\pi z}{\pi z}\prod_{k=1}^n\frac1{1-\frac{z}k}.$$ Note $f(k)=\binom{n}k$ for $k\in\mathbb{Z}^{\geq0}$. Moreover, $\sqrt{g(z)}$ is analytic in the region $-1<\Re(z)<n+1$ since $g(z)$ is zero-free there. By the [Residue Theorem][1], $$\sum_{k=0}^n\sqrt{\binom{n}k} =\frac1{2\pi i}\int_C\sqrt{g(z)}\,\frac{2\pi}{\sin2\pi z}\,dz$$$$\sum_{k=0}^n\sqrt{\binom{n}k} =\frac1{2\pi i}\int_C\sqrt{g(z)}\,\frac{\pi\cos\pi z}{\sin\pi z}\,dz$$ where $C$ is a closed (positive) contour inside $-1<\Re(z)<n+1$ going around once about each integer $0\leq k\leq n$. Choose $C_R$ as the rectangular along the lines $\Re(z)=-\frac12$, $\Re(z)=n+\frac12$ and $\Im(z)=\pm R$. Thus $$\int_{C_R}\sqrt{g(z)}\,\frac{2\pi}{\sin2\pi z}\,dz =\int_{C_R}\prod_{k=1}^n\sqrt{\frac1{1-\frac{z}k}}\,\frac{\sqrt{\pi}\,dz} {\cos\pi z\,\sqrt{z\sin\pi z}}.$$$$\int_{C_R}\sqrt{g(z)}\,\frac{\pi\cos\pi z}{\sin\pi z}\,dz =\int_{C_R}\prod_{k=1}^n\sqrt{\frac1{1-\frac{z}k}}\,\frac{\sqrt{\pi}\cos\pi z} {\sqrt{z\sin\pi z}}\,dz.$$ So, letting $R\rightarrow\infty$, we arrive at $$\sum_{k=0}^n\sqrt{\binom{n}k} =\frac1{2\pi i}\left[\int_{-\frac12+i\infty}^{-\frac12-i\infty} +\int_{n+\frac12-i\infty}^{n+\frac12+i\infty} \sqrt{g(z)}\,\frac{2\pi}{\sin2\pi z}\,dz\right].$$$$\sum_{k=0}^n\sqrt{\binom{n}k} =\frac1{2\pi i}\left[\int_{-\frac12+i\infty}^{-\frac12-i\infty} +\int_{n+\frac12-i\infty}^{n+\frac12+i\infty} \sqrt{g(z)}\,\frac{\pi\cos\pi z}{\sin\pi z}\,dz\right].$$ The integrand is invariant under $z\rightarrow n-z$, hence it suffices to compute (actually estimate) one of the integrals.
This is where I left off. Perhaps someone can complete the argument. [1]: https://en.wikipedia.org/wiki/Residue_theorem