Skip to main content
m.se solution doesn't look complete
Source Link
darij grinberg
  • 35.5k
  • 4
  • 125
  • 268

The terms of the sequence A276123, defined by $a_0=a_1=a_2=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)}{a_{n-3}}\;,$$ are all integers (it's easy to prove that for all $n\geq2$, $a_n=\frac{9-3(-1)^n}{2}a_{n-1}-a_{n-2}-1$).

But is it also true for the sequence A276175 defined by $a_0=a_1=a_2=a_3=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)(a_{n-3}+1)}{a_{n-4}} \;\;?$$

Remark : This question has been asked previously on math.SE ; one participant gave an interesting answer, but partial.

Update : It now appears that the problem received a complete solution on math.SE.

The terms of the sequence A276123, defined by $a_0=a_1=a_2=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)}{a_{n-3}}\;,$$ are all integers (it's easy to prove that for all $n\geq2$, $a_n=\frac{9-3(-1)^n}{2}a_{n-1}-a_{n-2}-1$).

But is it also true for the sequence A276175 defined by $a_0=a_1=a_2=a_3=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)(a_{n-3}+1)}{a_{n-4}} \;\;?$$

Remark : This question has been asked previously on math.SE ; one participant gave an interesting answer, but partial.

Update : It now appears that the problem received a complete solution on math.SE.

The terms of the sequence A276123, defined by $a_0=a_1=a_2=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)}{a_{n-3}}\;,$$ are all integers (it's easy to prove that for all $n\geq2$, $a_n=\frac{9-3(-1)^n}{2}a_{n-1}-a_{n-2}-1$).

But is it also true for the sequence A276175 defined by $a_0=a_1=a_2=a_3=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)(a_{n-3}+1)}{a_{n-4}} \;\;?$$

Remark : This question has been asked previously on math.SE ; one participant gave an interesting answer, but partial.

replaced http://math.stackexchange.com/ with https://math.stackexchange.com/
Source Link

The terms of the sequence A276123, defined by $a_0=a_1=a_2=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)}{a_{n-3}}\;,$$ are all integers (it's easy to prove that for all $n\geq2$, $a_n=\frac{9-3(-1)^n}{2}a_{n-1}-a_{n-2}-1$).

But is it also true for the sequence A276175 defined by $a_0=a_1=a_2=a_3=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)(a_{n-3}+1)}{a_{n-4}} \;\;?$$

Remark : This question has been asked previously on math.SEasked previously on math.SE ; one participant gave an interesting answer, but partial.

Update : It now appears that the problem received a complete solution on math.SE.

The terms of the sequence A276123, defined by $a_0=a_1=a_2=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)}{a_{n-3}}\;,$$ are all integers (it's easy to prove that for all $n\geq2$, $a_n=\frac{9-3(-1)^n}{2}a_{n-1}-a_{n-2}-1$).

But is it also true for the sequence A276175 defined by $a_0=a_1=a_2=a_3=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)(a_{n-3}+1)}{a_{n-4}} \;\;?$$

Remark : This question has been asked previously on math.SE ; one participant gave an interesting answer, but partial.

Update : It now appears that the problem received a complete solution on math.SE.

The terms of the sequence A276123, defined by $a_0=a_1=a_2=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)}{a_{n-3}}\;,$$ are all integers (it's easy to prove that for all $n\geq2$, $a_n=\frac{9-3(-1)^n}{2}a_{n-1}-a_{n-2}-1$).

But is it also true for the sequence A276175 defined by $a_0=a_1=a_2=a_3=1$ and $$a_n=\dfrac{(a_{n-1}+1)(a_{n-2}+1)(a_{n-3}+1)}{a_{n-4}} \;\;?$$

Remark : This question has been asked previously on math.SE ; one participant gave an interesting answer, but partial.

Update : It now appears that the problem received a complete solution on math.SE.

edited tags
Link
Alexey Ustinov
  • 13.5k
  • 7
  • 93
  • 129
added 89 characters in body
Source Link
uvdose
  • 675
  • 3
  • 12
Loading
edited tags
Link
uvdose
  • 675
  • 3
  • 12
Loading
Source Link
uvdose
  • 675
  • 3
  • 12
Loading