Many students believe that 1 plus the product of the first $n$ primes is always a prime number. They have misunderstood the contradiction in Euclid's proof that there are infinitely many primes. (By the way, 2 * 3 * 5 * 7 * 11 * 13 + 1$2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 + 1$ is not prime and there are many other such examples.)
Much later edit: As pointed out elsewhere in this thread, Euclid's proof is not by contradiction; that is another widespread false belief.
Much much later edit: Euclid's proof is not not by contradiction. This is another very widespread false belief. It depends on personal opinion and interpretation what a proof by contradiction is and whether Euclid's proof belongs to this category. In fact, if the derivation of an absurdity or the contradiction of an assumption is a proof by contradiction, then Euclid's proof is a proof by contradiction. Euclid says (Elements Book 9 Proposition 20): The very thing (is) absurd. Thus, G is not the same as one of A, B, C. And it was assumed (to be) prime.
Nb. The above edits were not added by the OP of this answer.
Edit on 24 July 2017: Euclid's proof was not by contradiction, but contains a small lemma in the middle of it that is proved by contradiction. The proof shows that if $S$ is any finite set of primes (not assumed to be the set of all primes) then the prime factors of $1+\prod S$ are not in $S$, so there is at least one more prime than those in $S.$ The proof that $\prod$ and $1+\prod$ have no common factors is the part that is by contradiction. All of this is shown in the following paper: M. Hardy and C. Woodgold, "Prime simplicity", Mathematical Intelligencer 31 (2009), 44–52.