Skip to main content
Bumped by Community user
Bumped by Community user
Bumped by Community user
added 23 characters in body
Source Link

I'm curious if there is any nice way to approach solving the following kind of optimization problem. Given a $n \times m$ matrix $A = (a_{ij})$, I want to solve \begin{align*} & \max_{c}\min_{1 \leq i \leq n} \sum_{j=1}^{m}c_{j}|a_{ij}|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}\begin{align*} & \max_{c}\min_{1 \leq i \leq n} \left|\sum_{j=1}^{m}c_{j}a_{ij}\right|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}

On a related note, if instead we have a vector of smooth scalar functions $\mathbf{f}(x) = [f_{1}(x), \ldots, f_{m}(x)]$ with each defined on some compact set $X \subset \mathbb{R}^{d}$, is there a nice way to solve \begin{align*} & \max_{c} \min_{x \in X} \sum_{j=1}^{m}c_{j}|f_{j}(x)|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}\begin{align*} & \max_{c} \min_{x \in X} \left|\sum_{j=1}^{m}c_{j}f_{j}(x) \right|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}

I'm curious if there is any nice way to approach solving the following kind of optimization problem. Given a $n \times m$ matrix $A = (a_{ij})$, I want to solve \begin{align*} & \max_{c}\min_{1 \leq i \leq n} \sum_{j=1}^{m}c_{j}|a_{ij}|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}

On a related note, if instead we have a vector of smooth scalar functions $\mathbf{f}(x) = [f_{1}(x), \ldots, f_{m}(x)]$ with each defined on some compact set $X \subset \mathbb{R}^{d}$, is there a nice way to solve \begin{align*} & \max_{c} \min_{x \in X} \sum_{j=1}^{m}c_{j}|f_{j}(x)|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}

I'm curious if there is any nice way to approach solving the following kind of optimization problem. Given a $n \times m$ matrix $A = (a_{ij})$, I want to solve \begin{align*} & \max_{c}\min_{1 \leq i \leq n} \left|\sum_{j=1}^{m}c_{j}a_{ij}\right|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}

On a related note, if instead we have a vector of smooth scalar functions $\mathbf{f}(x) = [f_{1}(x), \ldots, f_{m}(x)]$ with each defined on some compact set $X \subset \mathbb{R}^{d}$, is there a nice way to solve \begin{align*} & \max_{c} \min_{x \in X} \left|\sum_{j=1}^{m}c_{j}f_{j}(x) \right|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}

Source Link

max-min optimization problem

I'm curious if there is any nice way to approach solving the following kind of optimization problem. Given a $n \times m$ matrix $A = (a_{ij})$, I want to solve \begin{align*} & \max_{c}\min_{1 \leq i \leq n} \sum_{j=1}^{m}c_{j}|a_{ij}|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}

On a related note, if instead we have a vector of smooth scalar functions $\mathbf{f}(x) = [f_{1}(x), \ldots, f_{m}(x)]$ with each defined on some compact set $X \subset \mathbb{R}^{d}$, is there a nice way to solve \begin{align*} & \max_{c} \min_{x \in X} \sum_{j=1}^{m}c_{j}|f_{j}(x)|\\ & \textrm{ s.t. } \sum_{j=1}^{m}c_{j} = 1, \quad c_{j} \geq 0. \end{align*}