I am interested in the following problem: I have an infinite symmetric tridiagonal matrix $$ A_{\infty}= \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & \\ & b_2& a_3 & b_3 & \\ & & \ddots & \ddots & \ddots & \\ \end{bmatrix} $$$$ A= \begin{bmatrix} a_1 & b_1 & & & \\ b_1 & a_2 & b_2 & & \\ & b_2& a_3 & b_3 & \\ & & \ddots & \ddots & \ddots & \\ \end{bmatrix} $$ where $a_j, b_j>0$, and I need to determine whether $A_\infty$$A$ is positive definite, meaning that there exists a constantthe corresponding quadratic form is bounded below: $$ Q_A(\beta_1, \beta_2\ldots \beta_n\ldots)\stackrel{\mathrm{def}}{=}\sum_{j=1}^\infty a_j \beta_j^2 + 2b_j\beta_{j}\beta_{j+1} \ge c\sum_{j=1}^\infty \beta_j^2.$$ Here $c_\infty>0$ such$c>0$. (If $c=0$, we say that $$ \sum_{j=1}^\infty a_j \beta_j^2 + 2b_j\beta_{j}\beta_{j+1} \ge c_{\infty}\sum_{j=1}^\infty \beta_j^2$$ $A$ is positive semidefinite).
Question Are there infinite-dimensional versions of the familiar criterions of linear algebra, such as the Sylvester's criterion or the diagonal dominance sufficient condition?
Any result or reference is gladly welcome.