Welcome to Subscribe On Youtube

2629. Function Composition

Description

Given an array of functions [f1, f2, f3, ..., fn], return a new function fn that is the function composition of the array of functions.

The function composition of [f(x), g(x), h(x)] is fn(x) = f(g(h(x))).

The function composition of an empty list of functions is the identity function f(x) = x.

You may assume each function in the array accepts one integer as input and returns one integer as output.

 

Example 1:

 Input: functions = [x => x + 1, x => x * x, x => 2 * x], x = 4 Output: 65 Explanation: Evaluating from right to left ... Starting with x = 4. 2 * (4) = 8 (8) * (8) = 64 (64) + 1 = 65 

Example 2:

 Input: functions = [x => 10 * x, x => 10 * x, x => 10 * x], x = 1 Output: 1000 Explanation: Evaluating from right to left ... 10 * (1) = 10 10 * (10) = 100 10 * (100) = 1000 

Example 3:

 Input: functions = [], x = 42 Output: 42 Explanation: The composition of zero functions is the identity function

 

Constraints:

  • -1000 <= x <= 1000
  • 0 <= functions.length <= 1000
  • all functions accept and return a single integer

Solutions

  • type F = (x: number) => number; function compose(functions: F[]): F { return function (x) { return functions.reduceRight((acc, fn) => fn(acc), x); }; } /** * const fn = compose([x => x + 1, x => 2 * x]) * fn(4) // 9 */ 

All Problems

All Solutions