Welcome to Subscribe On Youtube

2541. Minimum Operations to Make Array Equal II

Description

You are given two integer arrays nums1 and nums2 of equal length n and an integer k. You can perform the following operation on nums1:

  • Choose two indexes i and j and increment nums1[i] by k and decrement nums1[j] by k. In other words, nums1[i] = nums1[i] + k and nums1[j] = nums1[j] - k.

nums1 is said to be equal to nums2 if for all indices i such that 0 <= i < n, nums1[i] == nums2[i].

Return the minimum number of operations required to make nums1 equal to nums2. If it is impossible to make them equal, return -1.

 

Example 1:

 Input: nums1 = [4,3,1,4], nums2 = [1,3,7,1], k = 3 Output: 2 Explanation: In 2 operations, we can transform nums1 to nums2. 1st operation: i = 2, j = 0. After applying the operation, nums1 = [1,3,4,4]. 2nd operation: i = 2, j = 3. After applying the operation, nums1 = [1,3,7,1]. One can prove that it is impossible to make arrays equal in fewer operations.

Example 2:

 Input: nums1 = [3,8,5,2], nums2 = [2,4,1,6], k = 1 Output: -1 Explanation: It can be proved that it is impossible to make the two arrays equal. 

 

Constraints:

  • n == nums1.length == nums2.length
  • 2 <= n <= 105
  • 0 <= nums1[i], nums2[j] <= 109
  • 0 <= k <= 105

Solutions

Solution 1: Single Pass

We use a variable $x$ to record the difference in the number of additions and subtractions, and a variable $ans$ to record the number of operations.

We traverse the array, and for each position $i$, if $k=0$ and $a_i \neq b_i$, then it is impossible to make the two arrays equal, so we return $-1$. Otherwise, if $k \neq 0$, then $a_i - b_i$ must be a multiple of $k$, otherwise it is impossible to make the two arrays equal, so we return $-1$. Next, we update $x$ and $ans$.

Finally, if $x \neq 0$, then it is impossible to make the two arrays equal, so we return $-1$. Otherwise, we return $\frac{ans}{2}$.

The time complexity is $O(n)$, and the space complexity is $O(1)$, where $n$ is the length of the array.

  • class Solution { public long minOperations(int[] nums1, int[] nums2, int k) { long ans = 0, x = 0; for (int i = 0; i < nums1.length; ++i) { int a = nums1[i], b = nums2[i]; if (k == 0) { if (a != b) { return -1; } continue; } if ((a - b) % k != 0) { return -1; } int y = (a - b) / k; ans += Math.abs(y); x += y; } return x == 0 ? ans / 2 : -1; } } 
  • class Solution { public: long long minOperations(vector<int>& nums1, vector<int>& nums2, int k) { long long ans = 0, x = 0; for (int i = 0; i < nums1.size(); ++i) { int a = nums1[i], b = nums2[i]; if (k == 0) { if (a != b) { return -1; } continue; } if ((a - b) % k != 0) { return -1; } int y = (a - b) / k; ans += abs(y); x += y; } return x == 0 ? ans / 2 : -1; } }; 
  • class Solution: def minOperations(self, nums1: List[int], nums2: List[int], k: int) -> int: ans = x = 0 for a, b in zip(nums1, nums2): if k == 0: if a != b: return -1 continue if (a - b) % k: return -1 y = (a - b) // k ans += abs(y) x += y return -1 if x else ans // 2 
  • func minOperations(nums1 []int, nums2 []int, k int) int64 { ans, x := 0, 0 for i, a := range nums1 { b := nums2[i] if k == 0 { if a != b { return -1 } continue } if (a-b)%k != 0 { return -1 } y := (a - b) / k ans += abs(y) x += y } if x != 0 { return -1 } return int64(ans / 2) } func abs(x int) int { if x < 0 { return -x } return x } 
  • function minOperations(nums1: number[], nums2: number[], k: number): number { const n = nums1.length; if (k === 0) { return nums1.every((v, i) => v === nums2[i]) ? 0 : -1; } let sum1 = 0; let sum2 = 0; for (let i = 0; i < n; i++) { const diff = nums1[i] - nums2[i]; sum1 += diff; if (diff % k !== 0) { return -1; } sum2 += Math.abs(diff); } if (sum1 !== 0) { return -1; } return sum2 / (k * 2); } 
  • impl Solution { pub fn min_operations(nums1: Vec<i32>, nums2: Vec<i32>, k: i32) -> i64 { let k = k as i64; let n = nums1.len(); if k == 0 { return if nums1 .iter() .enumerate() .all(|(i, &v)| v == nums2[i]) { 0 } else { -1 }; } let mut sum1 = 0; let mut sum2 = 0; for i in 0..n { let diff = (nums1[i] - nums2[i]) as i64; sum1 += diff; if diff % k != 0 { return -1; } sum2 += diff.abs(); } if sum1 != 0 { return -1; } sum2 / (k * 2) } } 

All Problems

All Solutions