Welcome to Subscribe On Youtube

1232. Check If It Is a Straight Line

Description

You are given an array coordinates, coordinates[i] = [x, y], where [x, y] represents the coordinate of a point. Check if these points make a straight line in the XY plane.

 

 

Example 1:

 Input: coordinates = [[1,2],[2,3],[3,4],[4,5],[5,6],[6,7]] Output: true 

Example 2:

 Input: coordinates = [[1,1],[2,2],[3,4],[4,5],[5,6],[7,7]] Output: false 

 

Constraints:

  • 2 <= coordinates.length <= 1000
  • coordinates[i].length == 2
  • -10^4 <= coordinates[i][0], coordinates[i][1] <= 10^4
  • coordinates contains no duplicate point.

Solutions

Solution 1: Mathematics

The time complexity is $O(n)$, where $n$ is the length of the coordinates array. The space complexity is $O(1)$.

  • class Solution { public boolean checkStraightLine(int[][] coordinates) { int x1 = coordinates[0][0], y1 = coordinates[0][1]; int x2 = coordinates[1][0], y2 = coordinates[1][1]; for (int i = 2; i < coordinates.length; ++i) { int x = coordinates[i][0], y = coordinates[i][1]; if ((x - x1) * (y2 - y1) != (y - y1) * (x2 - x1)) { return false; } } return true; } } 
  • class Solution { public: bool checkStraightLine(vector<vector<int>>& coordinates) { int x1 = coordinates[0][0], y1 = coordinates[0][1]; int x2 = coordinates[1][0], y2 = coordinates[1][1]; for (int i = 2; i < coordinates.size(); ++i) { int x = coordinates[i][0], y = coordinates[i][1]; if ((x - x1) * (y2 - y1) != (y - y1) * (x2 - x1)) { return false; } } return true; } }; 
  • class Solution: def checkStraightLine(self, coordinates: List[List[int]]) -> bool: x1, y1 = coordinates[0] x2, y2 = coordinates[1] for x, y in coordinates[2:]: if (x - x1) * (y2 - y1) != (y - y1) * (x2 - x1): return False return True 
  • func checkStraightLine(coordinates [][]int) bool { x1, y1 := coordinates[0][0], coordinates[0][1] x2, y2 := coordinates[1][0], coordinates[1][1] for i := 2; i < len(coordinates); i++ { x, y := coordinates[i][0], coordinates[i][1] if (x-x1)*(y2-y1) != (y-y1)*(x2-x1) { return false } } return true } 

All Problems

All Solutions