Welcome to Subscribe On Youtube

1220. Count Vowels Permutation

Description

Given an integer n, your task is to count how many strings of length n can be formed under the following rules:

  • Each character is a lower case vowel ('a', 'e', 'i', 'o', 'u')
  • Each vowel 'a' may only be followed by an 'e'.
  • Each vowel 'e' may only be followed by an 'a' or an 'i'.
  • Each vowel 'i' may not be followed by another 'i'.
  • Each vowel 'o' may only be followed by an 'i' or a 'u'.
  • Each vowel 'u' may only be followed by an 'a'.

Since the answer may be too large, return it modulo 10^9 + 7.

 

Example 1:

 Input: n = 1 Output: 5 Explanation: All possible strings are: "a", "e", "i" , "o" and "u". 

Example 2:

 Input: n = 2 Output: 10 Explanation: All possible strings are: "ae", "ea", "ei", "ia", "ie", "io", "iu", "oi", "ou" and "ua". 

Example 3: 

 Input: n = 5 Output: 68

 

Constraints:

  • 1 <= n <= 2 * 10^4

Solutions

Solution 1: Dynamic Programming

Based on the problem description, we can list the possible subsequent vowels for each vowel:

a [e] e [a|i] i [a|e|o|u] o [i|u] u [a] 

From this, we can deduce the possible preceding vowels for each vowel:

[e|i|u]	a [a|i]	e [e|o]	i [i]	o [i|o]	u 

We define $f[i]$ as the number of strings of the current length ending with the $i$-th vowel. If the length is $1$, then $f[i]=1$.

When the length is greater than $1$, we define $g[i]$ as the number of strings of the current length ending with the $i$-th vowel. Then $g[i]$ can be derived from $f$, that is:

\[g[i]= \begin{cases} f[1]+f[2]+f[4] & i=0 \\ f[0]+f[2] & i=1 \\ f[1]+f[3] & i=2 \\ f[2] & i=3 \\ f[2]+f[3] & i=4 \end{cases}\]

The final answer is $\sum_{i=0}^{4}f[i]$. Note that the answer may be very large, so we need to take the modulus of $10^9+7$.

The time complexity is $O(n)$, and the space complexity is $O(C)$. Here, $n$ is the length of the string, and $C$ is the number of vowels. In this problem, $C=5$.

Solution 2: Matrix Exponentiation to Accelerate Recursion

The time complexity is $O(C^3 \times \log n)$, and the space complexity is $O(C^2)$. Here, $C$ is the number of vowels. In this problem, $C=5$.

  • class Solution { public int countVowelPermutation(int n) { long[] f = new long[5]; Arrays.fill(f, 1); final int mod = (int) 1e9 + 7; for (int i = 1; i < n; ++i) { long[] g = new long[5]; g[0] = (f[1] + f[2] + f[4]) % mod; g[1] = (f[0] + f[2]) % mod; g[2] = (f[1] + f[3]) % mod; g[3] = f[2]; g[4] = (f[2] + f[3]) % mod; f = g; } long ans = 0; for (long x : f) { ans = (ans + x) % mod; } return (int) ans; } } 
  • class Solution { public: int countVowelPermutation(int n) { using ll = long long; vector<ll> f(5, 1); const int mod = 1e9 + 7; for (int i = 1; i < n; ++i) { vector<ll> g(5); g[0] = (f[1] + f[2] + f[4]) % mod; g[1] = (f[0] + f[2]) % mod; g[2] = (f[1] + f[3]) % mod; g[3] = f[2]; g[4] = (f[2] + f[3]) % mod; f = move(g); } return accumulate(f.begin(), f.end(), 0LL) % mod; } }; 
  • class Solution: def countVowelPermutation(self, n: int) -> int: f = [1] * 5 mod = 10**9 + 7 for _ in range(n - 1): g = [0] * 5 g[0] = (f[1] + f[2] + f[4]) % mod g[1] = (f[0] + f[2]) % mod g[2] = (f[1] + f[3]) % mod g[3] = f[2] g[4] = (f[2] + f[3]) % mod f = g return sum(f) % mod 
  • func countVowelPermutation(n int) (ans int) { const mod int = 1e9 + 7 f := make([]int, 5) for i := range f { f[i] = 1 } for i := 1; i < n; i++ { g := make([]int, 5) g[0] = (f[1] + f[2] + f[4]) % mod g[1] = (f[0] + f[2]) % mod g[2] = (f[1] + f[3]) % mod g[3] = f[2] % mod g[4] = (f[2] + f[3]) % mod f = g } for _, x := range f { ans = (ans + x) % mod } return } 
  • function countVowelPermutation(n: number): number { const f: number[] = Array(5).fill(1); const mod = 1e9 + 7; for (let i = 1; i < n; ++i) { const g: number[] = Array(5).fill(0); g[0] = (f[1] + f[2] + f[4]) % mod; g[1] = (f[0] + f[2]) % mod; g[2] = (f[1] + f[3]) % mod; g[3] = f[2]; g[4] = (f[2] + f[3]) % mod; f.splice(0, 5, ...g); } return f.reduce((a, b) => (a + b) % mod); } 
  • /** * @param {number} n * @return {number} */ var countVowelPermutation = function (n) { const mod = 1e9 + 7; const f = Array(5).fill(1); for (let i = 1; i < n; ++i) { const g = Array(5).fill(0); g[0] = (f[1] + f[2] + f[4]) % mod; g[1] = (f[0] + f[2]) % mod; g[2] = (f[1] + f[3]) % mod; g[3] = f[2]; g[4] = (f[2] + f[3]) % mod; f.splice(0, 5, ...g); } return f.reduce((a, b) => (a + b) % mod); }; 

All Problems

All Solutions