Structure of finite(ly generated) abelian groups #
AddCommGroup.equiv_free_prod_directSum_zmod: Any finitely generated abelian group is the product of a power ofℤand a direct sum of someZMod (p i ^ e i)for some prime powersp i ^ e i.AddCommGroup.equiv_directSum_zmod_of_finite: Any finite abelian group is a direct sum of someZMod (p i ^ e i)for some prime powersp i ^ e i.CommGroup.equiv_prod_multiplicative_zmod_of_finiteis a version for multiplicative groups.
theorem Module.finite_of_fg_torsion (M : Type u) [AddCommGroup M] [Module ℤ M] [Module.Finite ℤ M] (hM : IsTorsion ℤ M) :
Finite M
theorem AddCommGroup.equiv_free_prod_directSum_zmod (G : Type u) [AddCommGroup G] [hG : AddGroup.FG G] :
Structure theorem of finitely generated abelian groups : Any finitely generated abelian group is the product of a power of ℤ and a direct sum of some ZMod (p i ^ e i) for some prime powers p i ^ e i.
Structure theorem of finite abelian groups : Any finite abelian group is a direct sum of some ZMod (p i ^ e i) for some prime powers p i ^ e i.
Structure theorem of finite abelian groups : Any finite abelian group is a direct sum of some ZMod (n i) for some natural numbers n i > 1.
theorem AddCommGroup.finite_of_fg_torsion (G : Type u) [AddCommGroup G] [hG' : AddGroup.FG G] (hG : AddMonoid.IsTorsion G) :
Finite G
theorem CommGroup.finite_of_fg_torsion (G : Type u) [CommGroup G] [Group.FG G] (hG : Monoid.IsTorsion G) :
Finite G
theorem CommGroup.equiv_prod_multiplicative_zmod_of_finite (G : Type u_1) [CommGroup G] [Finite G] :
The Structure Theorem For Finite Abelian Groups in a multiplicative version: A finite commutative group G is isomorphic to a finite product of finite cyclic groups.