Author: fchollet
Date created: 2019/05/28
Last modified: 2020/04/17
Description: Demonstration of how to handle highly imbalanced classification problems.
This example looks at the Kaggle Credit Card Fraud Detection dataset to demonstrate how to train a classification model on data with highly imbalanced classes.
import csv import numpy as np # Get the real data from https://www.kaggle.com/mlg-ulb/creditcardfraud/ fname = "/Users/fchollet/Downloads/creditcard.csv" all_features = [] all_targets = [] with open(fname) as f: for i, line in enumerate(f): if i == 0: print("HEADER:", line.strip()) continue # Skip header fields = line.strip().split(",") all_features.append([float(v.replace('"', "")) for v in fields[:-1]]) all_targets.append([int(fields[-1].replace('"', ""))]) if i == 1: print("EXAMPLE FEATURES:", all_features[-1]) features = np.array(all_features, dtype="float32") targets = np.array(all_targets, dtype="uint8") print("features.shape:", features.shape) print("targets.shape:", targets.shape) HEADER: "Time","V1","V2","V3","V4","V5","V6","V7","V8","V9","V10","V11","V12","V13","V14","V15","V16","V17","V18","V19","V20","V21","V22","V23","V24","V25","V26","V27","V28","Amount","Class" EXAMPLE FEATURES: [0.0, -1.3598071336738, -0.0727811733098497, 2.53634673796914, 1.37815522427443, -0.338320769942518, 0.462387777762292, 0.239598554061257, 0.0986979012610507, 0.363786969611213, 0.0907941719789316, -0.551599533260813, -0.617800855762348, -0.991389847235408, -0.311169353699879, 1.46817697209427, -0.470400525259478, 0.207971241929242, 0.0257905801985591, 0.403992960255733, 0.251412098239705, -0.018306777944153, 0.277837575558899, -0.110473910188767, 0.0669280749146731, 0.128539358273528, -0.189114843888824, 0.133558376740387, -0.0210530534538215, 149.62] features.shape: (284807, 30) targets.shape: (284807, 1) num_val_samples = int(len(features) * 0.2) train_features = features[:-num_val_samples] train_targets = targets[:-num_val_samples] val_features = features[-num_val_samples:] val_targets = targets[-num_val_samples:] print("Number of training samples:", len(train_features)) print("Number of validation samples:", len(val_features)) Number of training samples: 227846 Number of validation samples: 56961 counts = np.bincount(train_targets[:, 0]) print( "Number of positive samples in training data: {} ({:.2f}% of total)".format( counts[1], 100 * float(counts[1]) / len(train_targets) ) ) weight_for_0 = 1.0 / counts[0] weight_for_1 = 1.0 / counts[1] Number of positive samples in training data: 417 (0.18% of total) mean = np.mean(train_features, axis=0) train_features -= mean val_features -= mean std = np.std(train_features, axis=0) train_features /= std val_features /= std import keras model = keras.Sequential( [ keras.Input(shape=train_features.shape[1:]), keras.layers.Dense(256, activation="relu"), keras.layers.Dense(256, activation="relu"), keras.layers.Dropout(0.3), keras.layers.Dense(256, activation="relu"), keras.layers.Dropout(0.3), keras.layers.Dense(1, activation="sigmoid"), ] ) model.summary() Model: "sequential" ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓ ┃ Layer (type) ┃ Output Shape ┃ Param # ┃ ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩ │ dense (Dense) │ (None, 256) │ 7,936 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_1 (Dense) │ (None, 256) │ 65,792 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout (Dropout) │ (None, 256) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_2 (Dense) │ (None, 256) │ 65,792 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dropout_1 (Dropout) │ (None, 256) │ 0 │ ├─────────────────────────────────┼───────────────────────────┼────────────┤ │ dense_3 (Dense) │ (None, 1) │ 257 │ └─────────────────────────────────┴───────────────────────────┴────────────┘
Total params: 139,777 (546.00 KB)
Trainable params: 139,777 (546.00 KB)
Non-trainable params: 0 (0.00 B)
class_weight argumentmetrics = [ keras.metrics.FalseNegatives(name="fn"), keras.metrics.FalsePositives(name="fp"), keras.metrics.TrueNegatives(name="tn"), keras.metrics.TruePositives(name="tp"), keras.metrics.Precision(name="precision"), keras.metrics.Recall(name="recall"), ] model.compile( optimizer=keras.optimizers.Adam(1e-2), loss="binary_crossentropy", metrics=metrics ) callbacks = [keras.callbacks.ModelCheckpoint("fraud_model_at_epoch_{epoch}.keras")] class_weight = {0: weight_for_0, 1: weight_for_1} model.fit( train_features, train_targets, batch_size=2048, epochs=30, verbose=2, callbacks=callbacks, validation_data=(val_features, val_targets), class_weight=class_weight, ) Epoch 1/30 112/112 - 3s - 24ms/step - fn: 39.0000 - fp: 25593.0000 - loss: 2.2586e-06 - precision: 0.0146 - recall: 0.9065 - tn: 201836.0000 - tp: 378.0000 - val_fn: 5.0000 - val_fp: 3430.0000 - val_loss: 0.1872 - val_precision: 0.0200 - val_recall: 0.9333 - val_tn: 53456.0000 - val_tp: 70.0000 Epoch 2/30 112/112 - 0s - 991us/step - fn: 32.0000 - fp: 7936.0000 - loss: 1.5505e-06 - precision: 0.0463 - recall: 0.9233 - tn: 219493.0000 - tp: 385.0000 - val_fn: 7.0000 - val_fp: 2351.0000 - val_loss: 0.1930 - val_precision: 0.0281 - val_recall: 0.9067 - val_tn: 54535.0000 - val_tp: 68.0000 Epoch 3/30 112/112 - 0s - 1ms/step - fn: 31.0000 - fp: 6716.0000 - loss: 1.2987e-06 - precision: 0.0544 - recall: 0.9257 - tn: 220713.0000 - tp: 386.0000 - val_fn: 4.0000 - val_fp: 3374.0000 - val_loss: 0.1781 - val_precision: 0.0206 - val_recall: 0.9467 - val_tn: 53512.0000 - val_tp: 71.0000 Epoch 4/30 112/112 - 0s - 1ms/step - fn: 25.0000 - fp: 7348.0000 - loss: 1.1292e-06 - precision: 0.0506 - recall: 0.9400 - tn: 220081.0000 - tp: 392.0000 - val_fn: 6.0000 - val_fp: 1405.0000 - val_loss: 0.0796 - val_precision: 0.0468 - val_recall: 0.9200 - val_tn: 55481.0000 - val_tp: 69.0000 Epoch 5/30 112/112 - 0s - 926us/step - fn: 19.0000 - fp: 6720.0000 - loss: 8.0334e-07 - precision: 0.0559 - recall: 0.9544 - tn: 220709.0000 - tp: 398.0000 - val_fn: 11.0000 - val_fp: 315.0000 - val_loss: 0.0212 - val_precision: 0.1689 - val_recall: 0.8533 - val_tn: 56571.0000 - val_tp: 64.0000 Epoch 6/30 112/112 - 0s - 1ms/step - fn: 19.0000 - fp: 6706.0000 - loss: 8.6899e-07 - precision: 0.0560 - recall: 0.9544 - tn: 220723.0000 - tp: 398.0000 - val_fn: 8.0000 - val_fp: 1262.0000 - val_loss: 0.0801 - val_precision: 0.0504 - val_recall: 0.8933 - val_tn: 55624.0000 - val_tp: 67.0000 Epoch 7/30 112/112 - 0s - 1ms/step - fn: 15.0000 - fp: 5161.0000 - loss: 6.5298e-07 - precision: 0.0723 - recall: 0.9640 - tn: 222268.0000 - tp: 402.0000 - val_fn: 7.0000 - val_fp: 1157.0000 - val_loss: 0.0623 - val_precision: 0.0555 - val_recall: 0.9067 - val_tn: 55729.0000 - val_tp: 68.0000 Epoch 8/30 112/112 - 0s - 1ms/step - fn: 11.0000 - fp: 6381.0000 - loss: 6.7164e-07 - precision: 0.0598 - recall: 0.9736 - tn: 221048.0000 - tp: 406.0000 - val_fn: 10.0000 - val_fp: 346.0000 - val_loss: 0.0270 - val_precision: 0.1582 - val_recall: 0.8667 - val_tn: 56540.0000 - val_tp: 65.0000 Epoch 9/30 112/112 - 0s - 1ms/step - fn: 16.0000 - fp: 7259.0000 - loss: 8.9098e-07 - precision: 0.0523 - recall: 0.9616 - tn: 220170.0000 - tp: 401.0000 - val_fn: 7.0000 - val_fp: 1998.0000 - val_loss: 0.1073 - val_precision: 0.0329 - val_recall: 0.9067 - val_tn: 54888.0000 - val_tp: 68.0000 Epoch 10/30 112/112 - 0s - 999us/step - fn: 19.0000 - fp: 7792.0000 - loss: 9.2179e-07 - precision: 0.0486 - recall: 0.9544 - tn: 219637.0000 - tp: 398.0000 - val_fn: 7.0000 - val_fp: 1515.0000 - val_loss: 0.0800 - val_precision: 0.0430 - val_recall: 0.9067 - val_tn: 55371.0000 - val_tp: 68.0000 Epoch 11/30 112/112 - 0s - 1ms/step - fn: 13.0000 - fp: 5828.0000 - loss: 6.4193e-07 - precision: 0.0648 - recall: 0.9688 - tn: 221601.0000 - tp: 404.0000 - val_fn: 9.0000 - val_fp: 794.0000 - val_loss: 0.0410 - val_precision: 0.0767 - val_recall: 0.8800 - val_tn: 56092.0000 - val_tp: 66.0000 Epoch 12/30 112/112 - 0s - 959us/step - fn: 10.0000 - fp: 6400.0000 - loss: 7.4358e-07 - precision: 0.0598 - recall: 0.9760 - tn: 221029.0000 - tp: 407.0000 - val_fn: 8.0000 - val_fp: 593.0000 - val_loss: 0.0466 - val_precision: 0.1015 - val_recall: 0.8933 - val_tn: 56293.0000 - val_tp: 67.0000 Epoch 13/30 112/112 - 0s - 913us/step - fn: 9.0000 - fp: 5756.0000 - loss: 6.8158e-07 - precision: 0.0662 - recall: 0.9784 - tn: 221673.0000 - tp: 408.0000 - val_fn: 11.0000 - val_fp: 280.0000 - val_loss: 0.0336 - val_precision: 0.1860 - val_recall: 0.8533 - val_tn: 56606.0000 - val_tp: 64.0000 Epoch 14/30 112/112 - 0s - 960us/step - fn: 13.0000 - fp: 6699.0000 - loss: 1.0667e-06 - precision: 0.0569 - recall: 0.9688 - tn: 220730.0000 - tp: 404.0000 - val_fn: 9.0000 - val_fp: 1165.0000 - val_loss: 0.0885 - val_precision: 0.0536 - val_recall: 0.8800 - val_tn: 55721.0000 - val_tp: 66.0000 Epoch 15/30 112/112 - 0s - 1ms/step - fn: 15.0000 - fp: 6705.0000 - loss: 6.8100e-07 - precision: 0.0566 - recall: 0.9640 - tn: 220724.0000 - tp: 402.0000 - val_fn: 10.0000 - val_fp: 750.0000 - val_loss: 0.0367 - val_precision: 0.0798 - val_recall: 0.8667 - val_tn: 56136.0000 - val_tp: 65.0000 Epoch 16/30 112/112 - 0s - 1ms/step - fn: 8.0000 - fp: 4288.0000 - loss: 4.1541e-07 - precision: 0.0871 - recall: 0.9808 - tn: 223141.0000 - tp: 409.0000 - val_fn: 11.0000 - val_fp: 351.0000 - val_loss: 0.0199 - val_precision: 0.1542 - val_recall: 0.8533 - val_tn: 56535.0000 - val_tp: 64.0000 Epoch 17/30 112/112 - 0s - 949us/step - fn: 8.0000 - fp: 4598.0000 - loss: 4.3510e-07 - precision: 0.0817 - recall: 0.9808 - tn: 222831.0000 - tp: 409.0000 - val_fn: 10.0000 - val_fp: 688.0000 - val_loss: 0.0296 - val_precision: 0.0863 - val_recall: 0.8667 - val_tn: 56198.0000 - val_tp: 65.0000 Epoch 18/30 112/112 - 0s - 946us/step - fn: 7.0000 - fp: 5544.0000 - loss: 4.6239e-07 - precision: 0.0689 - recall: 0.9832 - tn: 221885.0000 - tp: 410.0000 - val_fn: 8.0000 - val_fp: 444.0000 - val_loss: 0.0260 - val_precision: 0.1311 - val_recall: 0.8933 - val_tn: 56442.0000 - val_tp: 67.0000 Epoch 19/30 112/112 - 0s - 972us/step - fn: 3.0000 - fp: 2920.0000 - loss: 2.7543e-07 - precision: 0.1242 - recall: 0.9928 - tn: 224509.0000 - tp: 414.0000 - val_fn: 9.0000 - val_fp: 510.0000 - val_loss: 0.0245 - val_precision: 0.1146 - val_recall: 0.8800 - val_tn: 56376.0000 - val_tp: 66.0000 Epoch 20/30 112/112 - 0s - 1ms/step - fn: 6.0000 - fp: 5351.0000 - loss: 5.7495e-07 - precision: 0.0713 - recall: 0.9856 - tn: 222078.0000 - tp: 411.0000 - val_fn: 9.0000 - val_fp: 547.0000 - val_loss: 0.0255 - val_precision: 0.1077 - val_recall: 0.8800 - val_tn: 56339.0000 - val_tp: 66.0000 Epoch 21/30 112/112 - 0s - 1ms/step - fn: 6.0000 - fp: 3808.0000 - loss: 5.1475e-07 - precision: 0.0974 - recall: 0.9856 - tn: 223621.0000 - tp: 411.0000 - val_fn: 10.0000 - val_fp: 624.0000 - val_loss: 0.0320 - val_precision: 0.0943 - val_recall: 0.8667 - val_tn: 56262.0000 - val_tp: 65.0000 Epoch 22/30 112/112 - 0s - 1ms/step - fn: 6.0000 - fp: 5117.0000 - loss: 5.5465e-07 - precision: 0.0743 - recall: 0.9856 - tn: 222312.0000 - tp: 411.0000 - val_fn: 10.0000 - val_fp: 836.0000 - val_loss: 0.0556 - val_precision: 0.0721 - val_recall: 0.8667 - val_tn: 56050.0000 - val_tp: 65.0000 Epoch 23/30 112/112 - 0s - 939us/step - fn: 8.0000 - fp: 5583.0000 - loss: 5.5407e-07 - precision: 0.0683 - recall: 0.9808 - tn: 221846.0000 - tp: 409.0000 - val_fn: 12.0000 - val_fp: 501.0000 - val_loss: 0.0300 - val_precision: 0.1117 - val_recall: 0.8400 - val_tn: 56385.0000 - val_tp: 63.0000 Epoch 24/30 112/112 - 0s - 958us/step - fn: 5.0000 - fp: 3933.0000 - loss: 4.7133e-07 - precision: 0.0948 - recall: 0.9880 - tn: 223496.0000 - tp: 412.0000 - val_fn: 12.0000 - val_fp: 211.0000 - val_loss: 0.0326 - val_precision: 0.2299 - val_recall: 0.8400 - val_tn: 56675.0000 - val_tp: 63.0000 Epoch 25/30 112/112 - 0s - 1ms/step - fn: 7.0000 - fp: 5695.0000 - loss: 7.1277e-07 - precision: 0.0672 - recall: 0.9832 - tn: 221734.0000 - tp: 410.0000 - val_fn: 9.0000 - val_fp: 802.0000 - val_loss: 0.0598 - val_precision: 0.0760 - val_recall: 0.8800 - val_tn: 56084.0000 - val_tp: 66.0000 Epoch 26/30 112/112 - 0s - 949us/step - fn: 5.0000 - fp: 3853.0000 - loss: 4.1797e-07 - precision: 0.0966 - recall: 0.9880 - tn: 223576.0000 - tp: 412.0000 - val_fn: 8.0000 - val_fp: 771.0000 - val_loss: 0.0409 - val_precision: 0.0800 - val_recall: 0.8933 - val_tn: 56115.0000 - val_tp: 67.0000 Epoch 27/30 112/112 - 0s - 947us/step - fn: 4.0000 - fp: 3873.0000 - loss: 3.7369e-07 - precision: 0.0964 - recall: 0.9904 - tn: 223556.0000 - tp: 413.0000 - val_fn: 6.0000 - val_fp: 2208.0000 - val_loss: 0.1370 - val_precision: 0.0303 - val_recall: 0.9200 - val_tn: 54678.0000 - val_tp: 69.0000 Epoch 28/30 112/112 - 0s - 892us/step - fn: 5.0000 - fp: 4619.0000 - loss: 4.1290e-07 - precision: 0.0819 - recall: 0.9880 - tn: 222810.0000 - tp: 412.0000 - val_fn: 8.0000 - val_fp: 551.0000 - val_loss: 0.0273 - val_precision: 0.1084 - val_recall: 0.8933 - val_tn: 56335.0000 - val_tp: 67.0000 Epoch 29/30 112/112 - 0s - 931us/step - fn: 1.0000 - fp: 3336.0000 - loss: 2.5478e-07 - precision: 0.1109 - recall: 0.9976 - tn: 224093.0000 - tp: 416.0000 - val_fn: 9.0000 - val_fp: 487.0000 - val_loss: 0.0238 - val_precision: 0.1193 - val_recall: 0.8800 - val_tn: 56399.0000 - val_tp: 66.0000 Epoch 30/30 112/112 - 0s - 1ms/step - fn: 2.0000 - fp: 3521.0000 - loss: 4.1991e-07 - precision: 0.1054 - recall: 0.9952 - tn: 223908.0000 - tp: 415.0000 - val_fn: 10.0000 - val_fp: 462.0000 - val_loss: 0.0331 - val_precision: 0.1233 - val_recall: 0.8667 - val_tn: 56424.0000 - val_tp: 65.0000 <keras.src.callbacks.history.History at 0x7f22b41f3430> At the end of training, out of 56,961 validation transactions, we are:
In the real world, one would put an even higher weight on class 1, so as to reflect that False Negatives are more costly than False Positives.
Next time your credit card gets declined in an online purchase – this is why.
Example available on HuggingFace.