Hinge classkeras.metrics.Hinge(name="hinge", dtype=None) Computes the hinge metric between y_true and y_pred.
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
Arguments
Examples
>>> m = keras.metrics.Hinge() >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) >>> m.result() 1.3 >>> m.reset_state() >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], ... sample_weight=[1, 0]) >>> m.result() 1.1 SquaredHinge classkeras.metrics.SquaredHinge(name="squared_hinge", dtype=None) Computes the hinge metric between y_true and y_pred.
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1.
Arguments
Example
>>> m = keras.metrics.SquaredHinge() >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) >>> m.result() 1.86 >>> m.reset_state() >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], ... sample_weight=[1, 0]) >>> m.result() 1.46 CategoricalHinge classkeras.metrics.CategoricalHinge(name="categorical_hinge", dtype=None) Computes the categorical hinge metric between y_true and y_pred.
Arguments
Example
>>> m = keras.metrics.CategoricalHinge() >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) >>> m.result().numpy() 1.4000001 >>> m.reset_state() >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], ... sample_weight=[1, 0]) >>> m.result() 1.2