LSTMCell classkeras.layers.LSTMCell( units, activation="tanh", recurrent_activation="sigmoid", use_bias=True, kernel_initializer="glorot_uniform", recurrent_initializer="orthogonal", bias_initializer="zeros", unit_forget_bias=True, kernel_regularizer=None, recurrent_regularizer=None, bias_regularizer=None, kernel_constraint=None, recurrent_constraint=None, bias_constraint=None, dropout=0.0, recurrent_dropout=0.0, seed=None, **kwargs ) Cell class for the LSTM layer.
This class processes one step within the whole time sequence input, whereas keras.layer.LSTM processes the whole sequence.
Arguments
tanh). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x).sigmoid). If you pass None, no activation is applied (ie. "linear" activation: a(x) = x).True), whether the layer should use a bias vector.kernel weights matrix, used for the linear transformation of the inputs. Default: "glorot_uniform".recurrent_kernel weights matrix, used for the linear transformation of the recurrent state. Default: "orthogonal"."zeros".True). If True, add 1 to the bias of the forget gate at initialization. Setting it to True will also force bias_initializer="zeros". This is recommended in Jozefowicz et al.kernel weights matrix. Default: None.recurrent_kernel weights matrix. Default: None.None.kernel weights matrix. Default: None.recurrent_kernel weights matrix. Default: None.None.Call arguments
(batch, features).(batch, units), which is the state from the previous time step.dropout or recurrent_dropout is used.Example
>>> inputs = np.random.random((32, 10, 8)) >>> rnn = keras.layers.RNN(keras.layers.LSTMCell(4)) >>> output = rnn(inputs) >>> output.shape (32, 4) >>> rnn = keras.layers.RNN( ... keras.layers.LSTMCell(4), ... return_sequences=True, ... return_state=True) >>> whole_sequence_output, final_state = rnn(inputs) >>> whole_sequence_output.shape (32, 10, 4) >>> final_state.shape (32, 4)