Embedding classkeras.layers.Embedding( input_dim, output_dim, embeddings_initializer="uniform", embeddings_regularizer=None, embeddings_constraint=None, mask_zero=False, weights=None, lora_rank=None, lora_alpha=None, **kwargs ) Turns nonnegative integers (indexes) into dense vectors of fixed size.
e.g. [[4], [20]] -> [[0.25, 0.1], [0.6, -0.2]]
This layer can only be used on nonnegative integer inputs of a fixed range.
Example
>>> model = keras.Sequential() >>> model.add(keras.layers.Embedding(1000, 64)) >>> # The model will take as input an integer matrix of size (batch, >>> # input_length), and the largest integer (i.e. word index) in the input >>> # should be no larger than 999 (vocabulary size). >>> # Now model.output_shape is (None, 10, 64), where `None` is the batch >>> # dimension. >>> input_array = np.random.randint(1000, size=(32, 10)) >>> model.compile('rmsprop', 'mse') >>> output_array = model.predict(input_array) >>> print(output_array.shape) (32, 10, 64) Arguments
embeddings matrix (see keras.initializers).embeddings matrix (see keras.regularizers).embeddings matrix (see keras.constraints).True, then all subsequent layers in the model need to support masking or an exception will be raised. If mask_zero is set to True, as a consequence, index 0 cannot be used in the vocabulary (input_dim should equal size of vocabulary + 1).(input_dim, output_dim). The initial embeddings values to use.Embedding layer by calling layer.enable_lora(rank).lora_alpha / lora_rank, allowing you to fine-tune the strength of the LoRA adjustment independently of lora_rank.Input shape
2D tensor with shape: (batch_size, input_length).
Output shape
3D tensor with shape: (batch_size, input_length, output_dim).