ReLU layer

[source]

ReLU class

keras.layers.ReLU(max_value=None, negative_slope=0.0, threshold=0.0, **kwargs) 

Rectified Linear Unit activation function layer.

Formula:

f(x) = max(x,0) f(x) = max_value if x >= max_value f(x) = x if threshold <= x < max_value f(x) = negative_slope * (x - threshold) otherwise 

Example

relu_layer = keras.layers.ReLU( max_value=10, negative_slope=0.5, threshold=0, ) input = np.array([-10, -5, 0.0, 5, 10]) result = relu_layer(input) # result = [-5. , -2.5, 0. , 5. , 10.] 

Arguments

  • max_value: Float >= 0. Maximum activation value. None means unlimited. Defaults to None.
  • negative_slope: Float >= 0. Negative slope coefficient. Defaults to 0.0.
  • threshold: Float >= 0. Threshold value for thresholded activation. Defaults to 0.0.
  • **kwargs: Base layer keyword arguments, such as name and dtype.