ir_datasets
: CodeSearchNetA benchmark for semantic code search. Uses
Language: multiple/other/unknown
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet") for doc in dataset.docs_iter(): doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet docs
[doc_id] [repo] [path] [func_name] [code] [language] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset dataset = prepare_dataset('irds.codesearchnet') for doc in dataset.iter_documents(): print(doc) # an AdhocDocumentStore break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }{ "docs": { "count": 2070536, "fields": { "doc_id": { "max_len": 339, "common_prefix": "https://github.com/" } } } }
Official challenge set, with keyword queries and deep relevance assessments.
Language: multiple/other/unknown
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/challenge") for query in dataset.queries_iter(): query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export codesearchnet/challenge queries
[query_id] [text] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset topics = prepare_dataset('irds.codesearchnet.challenge.queries') # AdhocTopics for topic in topics.iter(): print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from codesearchnet
Language: multiple/other/unknown
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/challenge") for doc in dataset.docs_iter(): doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet/challenge docs
[doc_id] [repo] [path] [func_name] [code] [language] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset dataset = prepare_dataset('irds.codesearchnet.challenge') for doc in dataset.iter_documents(): print(doc) # an AdhocDocumentStore break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
0 | Irrelevant | 1.3K | 32.8% |
1 | Weak Match | 982 | 24.5% |
2 | String Match | 863 | 21.5% |
3 | Exact Match | 847 | 21.1% |
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/challenge") for qrel in dataset.qrels_iter(): qrel # namedtuple<query_id, doc_id, relevance, note>
You can find more details about the Python API here.
ir_datasets export codesearchnet/challenge qrels --format tsv
[query_id] [doc_id] [relevance] [note] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset qrels = prepare_dataset('irds.codesearchnet.challenge.qrels') # AdhocAssessments for topic_qrels in qrels.iter(): print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }{ "docs": { "count": 2070536, "fields": { "doc_id": { "max_len": 339, "common_prefix": "https://github.com/" } } }, "queries": { "count": 99 }, "qrels": { "count": 4006, "fields": { "relevance": { "counts_by_value": { "0": 1314, "1": 982, "2": 863, "3": 847 } } } } }
Official test set, using queries inferred from docstrings.
Language: en
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/test") for query in dataset.queries_iter(): query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export codesearchnet/test queries
[query_id] [text] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset topics = prepare_dataset('irds.codesearchnet.test.queries') # AdhocTopics for topic in topics.iter(): print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from codesearchnet
Language: multiple/other/unknown
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/test") for doc in dataset.docs_iter(): doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet/test docs
[doc_id] [repo] [path] [func_name] [code] [language] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset dataset = prepare_dataset('irds.codesearchnet.test') for doc in dataset.iter_documents(): print(doc) # an AdhocDocumentStore break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Matches docstring | 101K | 100.0% |
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/test") for qrel in dataset.qrels_iter(): qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export codesearchnet/test qrels --format tsv
[query_id] [doc_id] [relevance] [iteration] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset qrels = prepare_dataset('irds.codesearchnet.test.qrels') # AdhocAssessments for topic_qrels in qrels.iter(): print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }{ "docs": { "count": 2070536, "fields": { "doc_id": { "max_len": 339, "common_prefix": "https://github.com/" } } }, "queries": { "count": 100529 }, "qrels": { "count": 100529, "fields": { "relevance": { "counts_by_value": { "1": 100529 } } } } }
Official train set, using queries inferred from docstrings.
Language: en
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/train") for query in dataset.queries_iter(): query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export codesearchnet/train queries
[query_id] [text] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset topics = prepare_dataset('irds.codesearchnet.train.queries') # AdhocTopics for topic in topics.iter(): print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from codesearchnet
Language: multiple/other/unknown
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/train") for doc in dataset.docs_iter(): doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet/train docs
[doc_id] [repo] [path] [func_name] [code] [language] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset dataset = prepare_dataset('irds.codesearchnet.train') for doc in dataset.iter_documents(): print(doc) # an AdhocDocumentStore break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Matches docstring | 1.9M | 100.0% |
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/train") for qrel in dataset.qrels_iter(): qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export codesearchnet/train qrels --format tsv
[query_id] [doc_id] [relevance] [iteration] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset qrels = prepare_dataset('irds.codesearchnet.train.qrels') # AdhocAssessments for topic_qrels in qrels.iter(): print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }{ "docs": { "count": 2070536, "fields": { "doc_id": { "max_len": 339, "common_prefix": "https://github.com/" } } }, "queries": { "count": 1880853 }, "qrels": { "count": 1880853, "fields": { "relevance": { "counts_by_value": { "1": 1880853 } } } } }
Official validation set, using queries inferred from docstrings.
Language: en
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/valid") for query in dataset.queries_iter(): query # namedtuple<query_id, text>
You can find more details about the Python API here.
ir_datasets export codesearchnet/valid queries
[query_id] [text] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset topics = prepare_dataset('irds.codesearchnet.valid.queries') # AdhocTopics for topic in topics.iter(): print(topic) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocTopics.
Inherits docs from codesearchnet
Language: multiple/other/unknown
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/valid") for doc in dataset.docs_iter(): doc # namedtuple<doc_id, repo, path, func_name, code, language>
You can find more details about the Python API here.
ir_datasets export codesearchnet/valid docs
[doc_id] [repo] [path] [func_name] [code] [language] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset dataset = prepare_dataset('irds.codesearchnet.valid') for doc in dataset.iter_documents(): print(doc) # an AdhocDocumentStore break
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocDocumentStore
Relevance levels
Rel. | Definition | Count | % |
---|---|---|---|
1 | Matches docstring | 89K | 100.0% |
Examples:
import ir_datasets dataset = ir_datasets.load("codesearchnet/valid") for qrel in dataset.qrels_iter(): qrel # namedtuple<query_id, doc_id, relevance, iteration>
You can find more details about the Python API here.
ir_datasets export codesearchnet/valid qrels --format tsv
[query_id] [doc_id] [relevance] [iteration] ...
You can find more details about the CLI here.
No example available for PyTerrier
from datamaestro import prepare_dataset qrels = prepare_dataset('irds.codesearchnet.valid.qrels') # AdhocAssessments for topic_qrels in qrels.iter(): print(topic_qrels) # An AdhocTopic
This examples requires that experimaestro-ir be installed. For more information about the returned object, see the documentation about AdhocAssessments.
Bibtex:
@article{Husain2019CodeSearchNet, title={CodeSearchNet Challenge: Evaluating the State of Semantic Code Search}, author={Hamel Husain and Ho-Hsiang Wu and Tiferet Gazit and Miltiadis Allamanis and Marc Brockschmidt}, journal={ArXiv}, year={2019} }{ "docs": { "count": 2070536, "fields": { "doc_id": { "max_len": 339, "common_prefix": "https://github.com/" } } }, "queries": { "count": 89154 }, "qrels": { "count": 89154, "fields": { "relevance": { "counts_by_value": { "1": 89154 } } } } }