HugeGraph-LLM

Please refer to the AI repository README for the most up-to-date documentation, and the official website regularly is updated and synchronized.

Bridge the gap between Graph Databases and Large Language Models

AI summarizes the project documentation: Ask DeepWiki

🎯 Overview

HugeGraph-LLM is a comprehensive toolkit that combines the power of graph databases with large language models. It enables seamless integration between HugeGraph and LLMs for building intelligent applications.

Key Features

  • πŸ—οΈ Knowledge Graph Construction - Build KGs automatically using LLMs + HugeGraph
  • πŸ—£οΈ Natural Language Querying - Operate graph databases using natural language (Gremlin/Cypher)
  • πŸ” Graph-Enhanced RAG - Leverage knowledge graphs to improve answer accuracy (GraphRAG & Graph Agent)

For detailed source code doc, visit our DeepWiki page. (Recommended)

πŸ“‹ Prerequisites

[!IMPORTANT]

  • Python: 3.10+ (not tested on 3.12)
  • HugeGraph Server: 1.3+ (recommended: 1.5+)
  • UV Package Manager: 0.7+

πŸš€ Quick Start

Choose your preferred deployment method:

The fastest way to get started with both HugeGraph Server and RAG Service:

# 1. Set up environment cp docker/env.template docker/.env # Edit docker/.env and set PROJECT_PATH to your actual project path  # 2. Deploy services cd docker docker-compose -f docker-compose-network.yml up -d  # 3. Verify deployment docker-compose -f docker-compose-network.yml ps  # 4. Access services # HugeGraph Server: http://localhost:8080 # RAG Service: http://localhost:8001 

Option 2: Individual Docker Containers

For more control over individual components:

Available Images

  • hugegraph/rag - Development image with source code access
  • hugegraph/rag-bin - Production-optimized binary (compiled with Nuitka)
# 1. Create network docker network create -d bridge hugegraph-net  # 2. Start HugeGraph Server docker run -itd --name=server -p 8080:8080 --network hugegraph-net hugegraph/hugegraph  # 3. Start RAG Service docker pull hugegraph/rag:latest docker run -itd --name rag \  -v /path/to/your/hugegraph-llm/.env:/home/work/hugegraph-llm/.env \  -p 8001:8001 --network hugegraph-net hugegraph/rag  # 4. Monitor logs docker logs -f rag 

Option 3: Build from Source

For development and customization:

# 1. Start HugeGraph Server docker run -itd --name=server -p 8080:8080 hugegraph/hugegraph  # 2. Install UV package manager curl -LsSf https://astral.sh/uv/install.sh | sh  # 3. Clone and setup project git clone https://github.com/apache/incubator-hugegraph-ai.git cd incubator-hugegraph-ai/hugegraph-llm  # 4. Create virtual environment and install dependencies uv venv && source .venv/bin/activate uv pip install -e .  # 5. Launch RAG demo python -m hugegraph_llm.demo.rag_demo.app # Access at: http://127.0.0.1:8001  # 6. (Optional) Custom host/port python -m hugegraph_llm.demo.rag_demo.app --host 127.0.0.1 --port 18001 

Additional Setup (Optional)

# Download NLTK stopwords for better text processing python ./hugegraph_llm/operators/common_op/nltk_helper.py  # Update configuration files python -m hugegraph_llm.config.generate --update 

[!TIP] Check our Quick Start Guide for detailed usage examples and query logic explanations.

πŸ’‘ Usage Examples

Knowledge Graph Construction

Interactive Web Interface

Use the Gradio interface for visual knowledge graph building:

Input Options:

  • Text: Direct text input for RAG index creation
  • Files: Upload TXT or DOCX files (multiple selection supported)

Schema Configuration:

  • Custom Schema: JSON format following our template
  • HugeGraph Schema: Use existing graph instance schema (e.g., “hugegraph”)

Knowledge Graph Builder

Programmatic Construction

Build knowledge graphs with code using the KgBuilder class:

from hugegraph_llm.models.llms.init_llm import LLMs from hugegraph_llm.operators.kg_construction_task import KgBuilder  # Initialize and chain operations TEXT = "Your input text here..." builder = KgBuilder(LLMs().get_chat_llm())  (  builder  .import_schema(from_hugegraph="talent_graph").print_result()  .chunk_split(TEXT).print_result()  .extract_info(extract_type="property_graph").print_result()  .commit_to_hugegraph()  .run() ) 

Pipeline Workflow:

graph LR  A[Import Schema] --> B[Chunk Split]  B --> C[Extract Info]  C --> D[Commit to HugeGraph]  D --> E[Execute Pipeline]   style A fill:#fff2cc  style B fill:#d5e8d4  style C fill:#dae8fc  style D fill:#f8cecc  style E fill:#e1d5e7 

Graph-Enhanced RAG

Leverage HugeGraph for retrieval-augmented generation:

from hugegraph_llm.operators.graph_rag_task import RAGPipeline  # Initialize RAG pipeline graph_rag = RAGPipeline()  # Execute RAG workflow (  graph_rag  .extract_keywords(text="Tell me about Al Pacino.")  .keywords_to_vid()  .query_graphdb(max_deep=2, max_graph_items=30)  .merge_dedup_rerank()  .synthesize_answer(vector_only_answer=False, graph_only_answer=True)  .run(verbose=True) ) 

RAG Pipeline Flow:

graph TD  A[User Query] --> B[Extract Keywords]  B --> C[Match Graph Nodes]  C --> D[Retrieve Graph Context]  D --> E[Rerank Results]  E --> F[Generate Answer]   style A fill:#e3f2fd  style B fill:#f3e5f5  style C fill:#e8f5e8  style D fill:#fff3e0  style E fill:#fce4ec  style F fill:#e0f2f1 

πŸ”§ Configuration

After running the demo, configuration files are automatically generated:

  • Environment: hugegraph-llm/.env
  • Prompts: hugegraph-llm/src/hugegraph_llm/resources/demo/config_prompt.yaml

[!NOTE] Configuration changes are automatically saved when using the web interface. For manual changes, simply refresh the page to load updates.

LLM Provider Support: This project uses LiteLLM for multi-provider LLM support.

πŸ“š Additional Resources

  • Graph Visualization: Use HugeGraph Hubble for data analysis and schema management
  • API Documentation: Explore our REST API endpoints for integration
  • Community: Join our discussions and contribute to the project

License: Apache License 2.0 | Community: Apache HugeGraph