| Copyright | (c) Erich Gut |
|---|---|
| License | BSD3 |
| Maintainer | zerich.gut@gmail.com |
| Safe Haskell | None |
| Language | Haskell2010 |
OAlg.Structure.Fibred.Definition
Description
Synopsis
- class (Entity f, EntityRoot f) => Fibred f where
- data Fbr
- class Transformable s Fbr => TransformableFbr s
- tauFbr :: Transformable s Fbr => Struct s x -> Struct Fbr x
- module OAlg.Structure.Fibred.Root
- data Sheaf f = Sheaf (Root f) [f]
- type XFbr = X
- xoFbr :: XOrtOrientation f -> XFbr f
- xFbrOrnt :: X p -> XFbr (Orientation p)
- data XStalk x = XStalk (X (Root x)) (Root x -> X x)
- xRoot :: XStalk x -> X (Root x)
- xSheafRootMax :: Fibred f => XStalk f -> N -> Root f -> X (Sheaf f)
- xSheafMax :: Fibred f => XStalk f -> N -> X (Sheaf f)
- xStalkOrnt :: X p -> XStalk (Orientation p)
Fibred
class (Entity f, EntityRoot f) => Fibred f where Source #
types with a Fibred structure. An entity of a Fibred structure will be called a stalk.
Note
- On should accept the
defaultforrootonly if one intens to implement aFibredOrientedstructure! - For
Distributivestructures the only thing to be implemented is theRoottype and should be defined aswhere--Rootd =Orientationpp =(see the default implementation ofPointdroot).
Minimal complete definition
Nothing
Methods
the root of a stalk in f.
Instances
type representing the class of Fibred structures.
Instances
| TransformableTyp Fbr Source # | |
Defined in OAlg.Structure.Fibred.Definition | |
| TransformableFbr Fbr Source # | |
Defined in OAlg.Structure.Fibred.Definition | |
| Transformable Abl Fbr Source # | |
| Transformable Add Fbr Source # | |
| Transformable Dst Fbr Source # | |
| Transformable DstX Fbr Source # | |
| Transformable Fbr Ent Source # | |
| Transformable Fbr Typ Source # | |
| Transformable FbrOrt Fbr Source # | |
| Transformable FbrOrtX Fbr Source # | |
| Transformable (Alg k) Fbr Source # | |
| Transformable (Vec k) Fbr Source # | |
| Transformable s Fbr => Transformable (s, SldFr) Fbr Source # | |
| Transformable s Fbr => Transformable (s, Sld i) Fbr Source # | |
| type Structure Fbr x Source # | |
Defined in OAlg.Structure.Fibred.Definition | |
class Transformable s Fbr => TransformableFbr s Source #
helper class to avoid undecidable instances.
Instances
| TransformableFbr Abl Source # | |
Defined in OAlg.Structure.Additive.Definition | |
| TransformableFbr Add Source # | |
Defined in OAlg.Structure.Additive.Definition | |
| TransformableFbr Dst Source # | |
Defined in OAlg.Structure.Distributive.Definition | |
| TransformableFbr DstX Source # | |
Defined in OAlg.Structure.Distributive.Proposition | |
| TransformableFbr Fbr Source # | |
Defined in OAlg.Structure.Fibred.Definition | |
| TransformableFbr FbrOrt Source # | |
Defined in OAlg.Structure.FibredOriented | |
| TransformableFbr FbrOrtX Source # | |
Defined in OAlg.Structure.FibredOriented | |
| TransformableFbr (Alg k) Source # | |
Defined in OAlg.Structure.Algebraic.Definition | |
| TransformableFbr (Vec k) Source # | |
Defined in OAlg.Structure.Vectorial.Definition | |
| TransformableFbr s => TransformableFbr (s, SldFr) Source # | |
Defined in OAlg.Entity.Slice.Free | |
| TransformableFbr s => TransformableFbr (s, Sld i) Source # | |
Defined in OAlg.Entity.Slice.Sliced | |
module OAlg.Structure.Fibred.Root
Sheaf
a list in a Fibred structure having all the same root.
Definition Let f be a Fibred structure and s = a sheaf in Sheaf r [t 0 .. t (n-1)], then Sheaf fs is valid if and only if
furthermore n is called the length of s.
If two sheafs have the same root then there stalks can be composed - via ( - to a new sheaf having the same ++)root. But as ( is not commutative they are equipped with a ++)Multiplicative structure.
Instances
X
xoFbr :: XOrtOrientation f -> XFbr f Source #
the associated random variable for validating Fibred structures.
xFbrOrnt :: X p -> XFbr (Orientation p) Source #
random variable for the Fibred structure of .Orientation p
Stalk
xSheafMax :: Fibred f => XStalk f -> N -> X (Sheaf f) Source #
random variable of sheafs, based on the underlying random variable of roots, with a length of either 0 - for empty roots - or with the given length.
xStalkOrnt :: X p -> XStalk (Orientation p) Source #
random variable of XStalk on .Orientation p