| Copyright | (c) Erich Gut |
|---|---|
| License | BSD3 |
| Maintainer | zerich.gut@gmail.com |
| Safe Haskell | None |
| Language | Haskell2010 |
OAlg.Limes.PullbacksAndPushouts
Synopsis
- type Pullbacks (n :: N') = PullbacksG Cone Diagram n
- type PullbacksG (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = LimitsG c Mlt 'Projective d ('Star 'To) (n + 1) n
- type Pullback (n :: N') = PullbackG Cone Diagram n
- type PullbackG (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = LimesG c Mlt 'Projective d ('Star 'To) (n + 1) n
- type PullbackCone (n :: N') = PullbackConic Cone Diagram n
- type PullbackConic (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = c Mlt 'Projective d ('Star 'To) (n + 1) n
- type PullbackDiagram (n :: N') = PullbackDiagrammatic Diagram n
- type PullbackDiagrammatic (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = d ('Star 'To) (n + 1) n
- pullbacks :: forall x (n :: N'). Multiplicative x => Pullbacks N2 x -> Pullbacks n x
- pullbacks0 :: Multiplicative x => Pullbacks N0 x
- pullbacks1 :: Multiplicative x => Pullbacks N1 x
- plbPrdEql2 :: Multiplicative x => Products N2 x -> Equalizers N2 x -> Pullbacks N2 x
- pullbacksOrnt :: forall p (n :: N'). Entity p => p -> Pullbacks n (Orientation p)
- type Pushouts (n :: N') = PushoutsG Cone Diagram n
- type PushoutsG (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = LimitsG c Mlt 'Injective d ('Star 'From) (n + 1) n
- type Pushout (n :: N') = PushoutG Cone Diagram n
- type PushoutG (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = LimesG c Mlt 'Injective d ('Star 'From) (n + 1) n
- type PushoutCone (n :: N') = PushoutConic Cone Diagram n
- type PushoutConic (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = c Mlt 'Injective d ('Star 'From) (n + 1) n
- type PushoutDiagram (n :: N') = PushoutDiagrammatic Diagram n
- type PushoutDiagrammatic (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = d ('Star 'From) (n + 1) n
- pushouts :: forall x (n :: N'). Multiplicative x => Pushouts N2 x -> Pushouts n x
- pushouts' :: forall x p (n :: N'). Multiplicative x => p n -> Pushouts N2 x -> Pushouts n x
- pshSumCoeql2 :: Multiplicative x => Sums N2 x -> Coequalizers N2 x -> Pushouts N2 x
- pushoutsOrnt :: forall p (n :: N'). Entity p => p -> Pushouts n (Orientation p)
Pullbacks
type Pullbacks (n :: N') = PullbacksG Cone Diagram n Source #
pullbacks for Multiplicative structures.
type PullbacksG (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = LimitsG c Mlt 'Projective d ('Star 'To) (n + 1) n Source #
generic pullbacks for Multiplicative structures.
type PullbackG (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = LimesG c Mlt 'Projective d ('Star 'To) (n + 1) n Source #
generic pullback as LimesG.
type PullbackCone (n :: N') = PullbackConic Cone Diagram n Source #
Cone for a pullback.
type PullbackConic (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = c Mlt 'Projective d ('Star 'To) (n + 1) n Source #
Conic object for a pullback.
type PullbackDiagram (n :: N') = PullbackDiagrammatic Diagram n Source #
Diagram for a pullback.
type PullbackDiagrammatic (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = d ('Star 'To) (n + 1) n Source #
Diagrammatic object for a pullback.
Construction
pullbacks :: forall x (n :: N'). Multiplicative x => Pullbacks N2 x -> Pullbacks n x Source #
promotion of pullbacks.

pullbacks0 :: Multiplicative x => Pullbacks N0 x Source #
pullbacks for zero arrows as Minima.
pullbacks1 :: Multiplicative x => Pullbacks N1 x Source #
pullbacks of one arrow, i.e. Minima.
plbPrdEql2 :: Multiplicative x => Products N2 x -> Equalizers N2 x -> Pullbacks N2 x Source #
pullbacks given by products and equalizers.
Orientation
pullbacksOrnt :: forall p (n :: N'). Entity p => p -> Pullbacks n (Orientation p) Source #
pullbacks for Orientation.
Pushouts
type PushoutsG (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = LimitsG c Mlt 'Injective d ('Star 'From) (n + 1) n Source #
generic pushouts for Multiplicative structures.
type PushoutG (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = LimesG c Mlt 'Injective d ('Star 'From) (n + 1) n Source #
generic pushout as LimesG.
type PushoutCone (n :: N') = PushoutConic Cone Diagram n Source #
Cone for a pushout.
type PushoutConic (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = c Mlt 'Injective d ('Star 'From) (n + 1) n Source #
Conic object for a pushout.
type PushoutDiagram (n :: N') = PushoutDiagrammatic Diagram n Source #
Diagram for a pushout.
type PushoutDiagrammatic (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') = d ('Star 'From) (n + 1) n Source #
Diagrammatic object for a pushout.
Construction
pushouts :: forall x (n :: N'). Multiplicative x => Pushouts N2 x -> Pushouts n x Source #
promotion of pushouts.
pushouts' :: forall x p (n :: N'). Multiplicative x => p n -> Pushouts N2 x -> Pushouts n x Source #
pushouts given by a proxy for n.
pshSumCoeql2 :: Multiplicative x => Sums N2 x -> Coequalizers N2 x -> Pushouts N2 x Source #
pushouts given by sums and coequalizers.
Orientation
pushoutsOrnt :: forall p (n :: N'). Entity p => p -> Pushouts n (Orientation p) Source #
pushouts for Orientation.