| Copyright | (c) Erich Gut |
|---|---|
| License | BSD3 |
| Maintainer | zerich.gut@gmail.com |
| Safe Haskell | None |
| Language | Haskell2010 |
OAlg.Entity.Slice.Free
Description
sliced structures with assigned free Points of some given dimension.
Synopsis
- newtype Free (k :: N') c = Free (Any k)
- free' :: forall q x (k :: N'). q x -> Any k -> Free k x
- freeN :: forall (k :: N') c. Free k c -> N
- castFree :: forall (k :: N') x y. Free k x -> Free k y
- isFree :: forall (k :: N') c. Sliced (Free k) c => Free k c -> Point c -> Bool
- data SomeFree c where
- sfrPoint :: SomeFree x -> Point x
- sfrMap :: forall (h :: Type -> Type -> Type) (v :: Variant) x y. HomOrientedSlicedFree h => Variant2 v h x y -> SomeFree x -> SomeFree y
- class SlicedFree x where
- slicedFree :: forall (k :: N'). Attestable k => Struct (Sld (Free k)) x
- data SldFr
- class (HomOrientedDisjunctive h, Transformable (ObjectClass h) SldFr) => HomOrientedSlicedFree (h :: Type -> Type -> Type)
- prpHomOrientedSlicedFree :: forall h x y (k :: N'). (HomOrientedSlicedFree h, Show2 h) => h x y -> Any k -> Statement
- data SomeFreeSlice (s :: Site) c where
- SomeFreeSlice :: forall (k :: N') c (s :: Site). (Attestable k, Sliced (Free k) c) => Slice s (Free k) c -> SomeFreeSlice s c
- slicedFree' :: forall x (k :: N') q. (SlicedFree x, Attestable k) => q x -> Any k -> Struct (Sld (Free k)) x
- data DiagramFree (t :: DiagramType) (n :: N') (m :: N') a = DiagramFree (FinList n (SomeFree a)) (Diagram t n m a)
- dgfDiagram :: forall (t :: DiagramType) (n :: N') (m :: N') a. DiagramFree t n m a -> Diagram t n m a
- dgfMapS :: forall h (t :: DiagramType) x y (n :: N') (m :: N'). (HomOrientedSlicedFree h, t ~ Dual (Dual t)) => h x y -> SDualBi (DiagramFree t n m) x -> SDualBi (DiagramFree t n m) y
- dgfMapCov :: forall (h :: Type -> Type -> Type) x y (t :: DiagramType) (n :: N') (m :: N'). HomOrientedSlicedFree h => Variant2 'Covariant h x y -> DiagramFree t n m x -> DiagramFree t n m y
- dgfMapCnt :: forall (h :: Type -> Type -> Type) x y (t :: DiagramType) (n :: N') (m :: N'). HomOrientedSlicedFree h => Variant2 'Contravariant h x y -> DiagramFree t n m x -> DiagramFree (Dual t) n m y
- data SomeFreeSliceDiagram (t :: DiagramType) (n :: N') (m :: N') x where
- SomeFreeSliceKernel :: forall (k :: N') x. (Attestable k, Sliced (Free k) x) => Slice 'From (Free k) x -> SomeFreeSliceDiagram ('Parallel 'LeftToRight) ('S N1) ('S N0) x
- SomeFreeSliceCokernel :: forall (k :: N') x. (Attestable k, Sliced (Free k) x) => Slice 'To (Free k) x -> SomeFreeSliceDiagram ('Parallel 'RightToLeft) ('S N1) ('S N0) x
- sfsdMapS :: forall h (t :: DiagramType) x y (n :: N') (m :: N'). (HomOrientedSlicedFree h, t ~ Dual (Dual t)) => h x y -> SDualBi (SomeFreeSliceDiagram t n m) x -> SDualBi (SomeFreeSliceDiagram t n m) y
- sfsdMapCov :: forall (h :: Type -> Type -> Type) x y (t :: DiagramType) (n :: N') (m :: N'). HomOrientedSlicedFree h => Variant2 'Covariant h x y -> SomeFreeSliceDiagram t n m x -> SomeFreeSliceDiagram t n m y
- sfsdMapCnt :: forall (h :: Type -> Type -> Type) x y (t :: DiagramType) (n :: N') (m :: N'). HomOrientedSlicedFree h => Variant2 'Contravariant h x y -> SomeFreeSliceDiagram t n m x -> SomeFreeSliceDiagram (Dual t) n m y
- data ConeLiftable s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N') x where
- ConeKernelLiftable :: forall (d :: DiagramType -> N' -> N' -> Type -> Type) x. KernelConic Cone d N1 x -> LiftableFree 'Projective x -> ConeLiftable Dst 'Projective d ('Parallel 'LeftToRight) ('S N1) ('S N0) x
- ConeCokernelLiftable :: forall (d :: DiagramType -> N' -> N' -> Type -> Type) x. CokernelConic Cone d N1 x -> LiftableFree 'Injective x -> ConeLiftable Dst 'Injective d ('Parallel 'RightToLeft) ('S N1) ('S N0) x
- cnLiftable :: forall s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N') x. ConeLiftable s p d t n m x -> LiftableFree p x
- cnlMapS :: forall s (d :: DiagramType -> N' -> N' -> Type -> Type) (p :: Perspective) (t :: DiagramType) x y (n :: N') (m :: N'). (NaturalDiagrammatic (Inv2 (HomFree s)) d ('Parallel 'LeftToRight) N2 N1, NaturalDiagrammatic (Inv2 (HomFree s)) d ('Parallel 'RightToLeft) N2 N1, p ~ Dual (Dual p), t ~ Dual (Dual t)) => Inv2 (HomFree s) x y -> SDualBi (ConeLiftable s p d t n m) x -> SDualBi (ConeLiftable s p d t n m) y
- data LiftableFree (p :: Perspective) x where
- LiftableFree :: forall (p :: Perspective) x. (forall (k :: N'). Any k -> Liftable p (Free k) x) -> LiftableFree p x
- liftFree :: forall (p :: Perspective) x (k :: N'). LiftableFree p x -> Any k -> Liftable p (Free k) x
- type HomFree s = Sub (s, SldFr) (HomDisjEmpty s Op)
- lftFrMapSMlt :: forall (p :: Perspective) x y. p ~ Dual (Dual p) => Inv2 (HomFree Mlt) x y -> SDualBi (LiftableFree p) x -> SDualBi (LiftableFree p) y
- lftFrMapSDst :: forall (p :: Perspective) x y. p ~ Dual (Dual p) => Inv2 (HomFree Dst) x y -> SDualBi (LiftableFree p) x -> SDualBi (LiftableFree p) y
- class (NaturalDiagrammatic (Inv2 (HomFree s)) d ('Parallel 'LeftToRight) n m, NaturalDiagrammatic (Inv2 (HomFree s)) d ('Parallel 'RightToLeft) n m) => NaturalDiagrammaticFree s (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') (m :: N')
- type CokernelsLiftableSomeFree = CokernelsG ConeLiftable SomeFreeSliceDiagram N1
- type CokernelLiftableSomeFree = CokernelG ConeLiftable SomeFreeSliceDiagram N1
- data ConicFreeTip (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N') x where
- ConicFreeTip :: forall (k :: N') x (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N'). (Attestable k, Sliced (Free k) x) => Free k x -> c s p d t n m x -> ConicFreeTip c s p d t n m x
- type KernelsSomeFreeFreeTip = KernelsG (ConicFreeTip Cone) SomeFreeSliceDiagram N1
- type KernelSomeFreeFreeTip = KernelG (ConicFreeTip Cone) SomeFreeSliceDiagram N1
- data KernelSliceFromSomeFreeTip (n :: N') (i :: Type -> Type) c where
- KernelSliceFromSomeFreeTip :: forall (k' :: N') c (i :: Type -> Type) (n :: N'). (Attestable k', Sliced (Free k') c) => Free k' c -> i c -> Kernel n c -> KernelSliceFromSomeFreeTip n i c
- toDualOpFreeDst :: (Distributive x, SlicedFree x) => Variant2 'Contravariant (Inv2 (HomFree Dst)) x (Op x)
Free
newtype Free (k :: N') c Source #
index for free points within a Multiplicative structure c.
>>>lengthN (Free attest :: Free N3 c)3
Instances
| Attestable k => NaturalDiagrammaticFree Dst (SliceDiagram (Free k)) N2 N1 Source # | |
Defined in OAlg.Entity.Slice.Adjunction | |
| Eq1 (Free k) Source # | |
| Show1 (Free k) Source # | |
| Attestable k => Singleton1 (Free k) Source # | |
Defined in OAlg.Entity.Slice.Free | |
| Validable1 (Free k) Source # | |
| Attestable k => HomSlicedOriented (Free k) (Sub (Dst, SldFr) (HomDisjEmpty Dst Op)) Source # | |
Defined in OAlg.Entity.Slice.Free | |
| Show (Free k c) Source # | |
| Eq (Free k c) Source # | |
| Validable (Free k c) Source # | |
| Attestable k => Transformable (s, SldFr) (Sld (Free k)) Source # | |
| (Distributive a, XStandardEligibleConeCokernel N1 a, XStandardEligibleConeFactorCokernel N1 a, XStandardEligibleConeKernel N1 a, XStandardEligibleConeFactorKernel N1 a, XStandardSomeFreeSliceFromLiftable a) => Validable (FinitePresentation 'To Free a) Source # | |
Defined in OAlg.Data.FinitelyPresentable | |
free' :: forall q x (k :: N'). q x -> Any k -> Free k x Source #
k-Free of x, given by the proxy q x.
isFree :: forall (k :: N') c. Sliced (Free k) c => Free k c -> Point c -> Bool Source #
check for being a free point, i.e. if it is equal to slicePoint.
Definition Let n be in and Free n cp in then we call Point cp of order n if and only if .slicePoint i == p
data SomeFree c where Source #
some free attest.
Constructors
| SomeFree :: forall (k :: N') c. (Attestable k, Sliced (Free k) c) => Free k c -> SomeFree c |
sfrMap :: forall (h :: Type -> Type -> Type) (v :: Variant) x y. HomOrientedSlicedFree h => Variant2 v h x y -> SomeFree x -> SomeFree y Source #
mapping of SomeFree.
Sliced Free
class SlicedFree x where Source #
attest for k-free sliced structures.
Methods
slicedFree :: forall (k :: N'). Attestable k => Struct (Sld (Free k)) x Source #
Instances
| SlicedFree x => SlicedFree (Op x) Source # | |
Defined in OAlg.Entity.Slice.Free Methods slicedFree :: forall (k :: N'). Attestable k => Struct (Sld (Free k)) (Op x) Source # | |
SlicedFree structures.
Instances
class (HomOrientedDisjunctive h, Transformable (ObjectClass h) SldFr) => HomOrientedSlicedFree (h :: Type -> Type -> Type) Source #
homomorphisms between SlicedFree structures, i.e. homomorphisms between Oriented structures where pmap preserves the k-parameterized slice points.
Property Let , then for all HomOrientedSlicedFree hx, y and h in h x y holds:
- For all
kholds:wherepmaph (slicePoint$free'qx k)==(slicePoint$free'qy k)kis inandFreek xqxis any proxy inq xandqyis any proxy inq y.
Instances
| HomOrientedSlicedFree (Inv2 (HomFree Dst)) Source # | |
Defined in OAlg.Entity.Slice.Free | |
| HomOrientedSlicedFree (Inv2 (HomFree Mlt)) Source # | |
Defined in OAlg.Entity.Slice.Free | |
| (TransformableOrt s, TransformableType s, TransformableOp s) => HomOrientedSlicedFree (HomFree s) Source # | |
Defined in OAlg.Entity.Slice.Free | |
prpHomOrientedSlicedFree :: forall h x y (k :: N'). (HomOrientedSlicedFree h, Show2 h) => h x y -> Any k -> Statement Source #
validity according to HomOrientedSlicedFree.
data SomeFreeSlice (s :: Site) c where Source #
some free point within a Multiplicative structure c.
Constructors
| SomeFreeSlice :: forall (k :: N') c (s :: Site). (Attestable k, Sliced (Free k) c) => Slice s (Free k) c -> SomeFreeSlice s c |
Instances
| Show c => Show (SomeFreeSlice s c) Source # | |
Defined in OAlg.Entity.Slice.Free Methods showsPrec :: Int -> SomeFreeSlice s c -> ShowS # show :: SomeFreeSlice s c -> String # showList :: [SomeFreeSlice s c] -> ShowS # | |
| Validable (SomeFreeSlice s c) Source # | |
Defined in OAlg.Entity.Slice.Free Methods valid :: SomeFreeSlice s c -> Statement Source # | |
slicedFree' :: forall x (k :: N') q. (SlicedFree x, Attestable k) => q x -> Any k -> Struct (Sld (Free k)) x Source #
attest for k-free sliced structures according to the given proxy type.
Diagram Free
data DiagramFree (t :: DiagramType) (n :: N') (m :: N') a Source #
predicate for diagrams with free points.
Constructors
| DiagramFree (FinList n (SomeFree a)) (Diagram t n m a) |
Instances
dgfDiagram :: forall (t :: DiagramType) (n :: N') (m :: N') a. DiagramFree t n m a -> Diagram t n m a Source #
the underlying diagram.
dgfMapS :: forall h (t :: DiagramType) x y (n :: N') (m :: N'). (HomOrientedSlicedFree h, t ~ Dual (Dual t)) => h x y -> SDualBi (DiagramFree t n m) x -> SDualBi (DiagramFree t n m) y Source #
mapping of DiagramFree.
dgfMapCov :: forall (h :: Type -> Type -> Type) x y (t :: DiagramType) (n :: N') (m :: N'). HomOrientedSlicedFree h => Variant2 'Covariant h x y -> DiagramFree t n m x -> DiagramFree t n m y Source #
covariant mapping of DiagramFree.
dgfMapCnt :: forall (h :: Type -> Type -> Type) x y (t :: DiagramType) (n :: N') (m :: N'). HomOrientedSlicedFree h => Variant2 'Contravariant h x y -> DiagramFree t n m x -> DiagramFree (Dual t) n m y Source #
contravariant mapping of DiagramFree.
Some Free Slice Diagram
data SomeFreeSliceDiagram (t :: DiagramType) (n :: N') (m :: N') x where Source #
some free slice diagram for kernels and cokernels diagrams.
Constructors
| SomeFreeSliceKernel :: forall (k :: N') x. (Attestable k, Sliced (Free k) x) => Slice 'From (Free k) x -> SomeFreeSliceDiagram ('Parallel 'LeftToRight) ('S N1) ('S N0) x | |
| SomeFreeSliceCokernel :: forall (k :: N') x. (Attestable k, Sliced (Free k) x) => Slice 'To (Free k) x -> SomeFreeSliceDiagram ('Parallel 'RightToLeft) ('S N1) ('S N0) x |
Instances
| Diagrammatic SomeFreeSliceDiagram Source # | |
Defined in OAlg.Entity.Slice.Free Methods diagram :: forall (t :: DiagramType) (n :: N') (m :: N') x. SomeFreeSliceDiagram t n m x -> Diagram t n m x Source # | |
| (HomOrientedSlicedFree h, t ~ Dual (Dual t)) => ApplicativeG (SDualBi (SomeFreeSliceDiagram t n m)) h (->) Source # | |
Defined in OAlg.Entity.Slice.Free Methods amapG :: h x y -> SDualBi (SomeFreeSliceDiagram t n m) x -> SDualBi (SomeFreeSliceDiagram t n m) y Source # | |
| (HomOrientedSlicedFree h, FunctorialOriented h, t ~ Dual (Dual t)) => FunctorialG (SDualBi (SomeFreeSliceDiagram t n m)) h (->) Source # | |
Defined in OAlg.Entity.Slice.Free | |
| type Dual1 (SomeFreeSliceDiagram t n m :: Type -> Type) Source # | |
Defined in OAlg.Entity.Slice.Free | |
Duality
sfsdMapS :: forall h (t :: DiagramType) x y (n :: N') (m :: N'). (HomOrientedSlicedFree h, t ~ Dual (Dual t)) => h x y -> SDualBi (SomeFreeSliceDiagram t n m) x -> SDualBi (SomeFreeSliceDiagram t n m) y Source #
mapping of SomeFreeSliceDiagram.
sfsdMapCov :: forall (h :: Type -> Type -> Type) x y (t :: DiagramType) (n :: N') (m :: N'). HomOrientedSlicedFree h => Variant2 'Covariant h x y -> SomeFreeSliceDiagram t n m x -> SomeFreeSliceDiagram t n m y Source #
covariant mapping of SomeFreeSliceDiagram.
sfsdMapCnt :: forall (h :: Type -> Type -> Type) x y (t :: DiagramType) (n :: N') (m :: N'). HomOrientedSlicedFree h => Variant2 'Contravariant h x y -> SomeFreeSliceDiagram t n m x -> SomeFreeSliceDiagram (Dual t) n m y Source #
contravariant mapping of SomeFreeSliceDiagram.
Cone Liftable
data ConeLiftable s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N') x where Source #
predicate for a liftable conic object.
Property Let cl be in , then holds:ConeLiftable s p d t n m x
- If
clmatches, then for anyConeKernelLiftablec (LiftableFreel)kinholds:Anyk.lftbBase(l k)'==kernelFactorc - If
clmatches, then for anyConeCokernelLiftablec (LiftableFreel)kinholds:Anyk.lftbBase(l k)'==cokernelFactorc
Constructors
| ConeKernelLiftable :: forall (d :: DiagramType -> N' -> N' -> Type -> Type) x. KernelConic Cone d N1 x -> LiftableFree 'Projective x -> ConeLiftable Dst 'Projective d ('Parallel 'LeftToRight) ('S N1) ('S N0) x | |
| ConeCokernelLiftable :: forall (d :: DiagramType -> N' -> N' -> Type -> Type) x. CokernelConic Cone d N1 x -> LiftableFree 'Injective x -> ConeLiftable Dst 'Injective d ('Parallel 'RightToLeft) ('S N1) ('S N0) x |
Instances
cnLiftable :: forall s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N') x. ConeLiftable s p d t n m x -> LiftableFree p x Source #
the underlying liftable.
cnlMapS :: forall s (d :: DiagramType -> N' -> N' -> Type -> Type) (p :: Perspective) (t :: DiagramType) x y (n :: N') (m :: N'). (NaturalDiagrammatic (Inv2 (HomFree s)) d ('Parallel 'LeftToRight) N2 N1, NaturalDiagrammatic (Inv2 (HomFree s)) d ('Parallel 'RightToLeft) N2 N1, p ~ Dual (Dual p), t ~ Dual (Dual t)) => Inv2 (HomFree s) x y -> SDualBi (ConeLiftable s p d t n m) x -> SDualBi (ConeLiftable s p d t n m) y Source #
mapping of ConeLiftable.
Liftable Free
data LiftableFree (p :: Perspective) x where Source #
liftable according to a free slice.
Constructors
| LiftableFree :: forall (p :: Perspective) x. (forall (k :: N'). Any k -> Liftable p (Free k) x) -> LiftableFree p x |
Instances
| p ~ Dual (Dual p) => ApplicativeG (SDualBi (LiftableFree p)) (Inv2 (HomFree Dst)) (->) Source # | |
Defined in OAlg.Entity.Slice.Free Methods amapG :: Inv2 (HomFree Dst) x y -> SDualBi (LiftableFree p) x -> SDualBi (LiftableFree p) y Source # | |
| p ~ Dual (Dual p) => ApplicativeG (SDualBi (LiftableFree p)) (Inv2 (HomFree Mlt)) (->) Source # | |
Defined in OAlg.Entity.Slice.Free Methods amapG :: Inv2 (HomFree Mlt) x y -> SDualBi (LiftableFree p) x -> SDualBi (LiftableFree p) y Source # | |
| p ~ Dual (Dual p) => FunctorialG (SDualBi (LiftableFree p)) (Inv2 (HomFree Dst)) (->) Source # | |
Defined in OAlg.Entity.Slice.Free | |
| p ~ Dual (Dual p) => FunctorialG (SDualBi (LiftableFree p)) (Inv2 (HomFree Mlt)) (->) Source # | |
Defined in OAlg.Entity.Slice.Free | |
| type Dual1 (LiftableFree p :: Type -> Type) Source # | |
Defined in OAlg.Entity.Slice.Free | |
liftFree :: forall (p :: Perspective) x (k :: N'). LiftableFree p x -> Any k -> Liftable p (Free k) x Source #
lifting a free slice.
type HomFree s = Sub (s, SldFr) (HomDisjEmpty s Op) Source #
homomorphism between free sliced structures.
lftFrMapSMlt :: forall (p :: Perspective) x y. p ~ Dual (Dual p) => Inv2 (HomFree Mlt) x y -> SDualBi (LiftableFree p) x -> SDualBi (LiftableFree p) y Source #
mapping of LiftableFree.
lftFrMapSDst :: forall (p :: Perspective) x y. p ~ Dual (Dual p) => Inv2 (HomFree Dst) x y -> SDualBi (LiftableFree p) x -> SDualBi (LiftableFree p) y Source #
mapping of LiftableFree.
class (NaturalDiagrammatic (Inv2 (HomFree s)) d ('Parallel 'LeftToRight) n m, NaturalDiagrammatic (Inv2 (HomFree s)) d ('Parallel 'RightToLeft) n m) => NaturalDiagrammaticFree s (d :: DiagramType -> N' -> N' -> Type -> Type) (n :: N') (m :: N') Source #
helper class to avoid undecidable instances.
Instances
| NaturalDiagrammaticFree Dst Diagram n m Source # | |
Defined in OAlg.Entity.Slice.Free | |
| NaturalDiagrammaticFree Dst DiagramFree n m Source # | |
Defined in OAlg.Entity.Slice.Free | |
| Attestable k => NaturalDiagrammaticFree Dst (SliceDiagram (Free k)) N2 N1 Source # | |
Defined in OAlg.Entity.Slice.Adjunction | |
type CokernelsLiftableSomeFree = CokernelsG ConeLiftable SomeFreeSliceDiagram N1 Source #
liftable cokernels for some free slice diagram
type CokernelLiftableSomeFree = CokernelG ConeLiftable SomeFreeSliceDiagram N1 Source #
liftable cokernels for some free slice diagram
Free Tip
data ConicFreeTip (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N') x where Source #
predicate for a Conic object with a free tip.
Property Let c be in , then holds:ConicFreeTip c s p d t n m x
.slicePointk==tip(conec)
Constructors
| ConicFreeTip :: forall (k :: N') x (c :: Type -> Perspective -> (DiagramType -> N' -> N' -> Type -> Type) -> DiagramType -> N' -> N' -> Type -> Type) s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N'). (Attestable k, Sliced (Free k) x) => Free k x -> c s p d t n m x -> ConicFreeTip c s p d t n m x |
Instances
| Conic c => Conic (ConicFreeTip c) Source # | |
Defined in OAlg.Entity.Slice.Free Methods cone :: forall s (p :: Perspective) (d :: DiagramType -> N' -> N' -> Type -> Type) (t :: DiagramType) (n :: N') (m :: N') x. ConicFreeTip c s p d t n m x -> Cone s p d t n m x Source # | |
| Show (c s p d t n m x) => Show (ConicFreeTip c s p d t n m x) Source # | |
Defined in OAlg.Entity.Slice.Free Methods showsPrec :: Int -> ConicFreeTip c s p d t n m x -> ShowS # show :: ConicFreeTip c s p d t n m x -> String # showList :: [ConicFreeTip c s p d t n m x] -> ShowS # | |
| (Conic c, Show (c s p d t n m x), Validable (c s p d t n m x)) => Validable (ConicFreeTip c s p d t n m x) Source # | |
Defined in OAlg.Entity.Slice.Free Methods valid :: ConicFreeTip c s p d t n m x -> Statement Source # | |
type KernelsSomeFreeFreeTip = KernelsG (ConicFreeTip Cone) SomeFreeSliceDiagram N1 Source #
kernels with a free tip.
type KernelSomeFreeFreeTip = KernelG (ConicFreeTip Cone) SomeFreeSliceDiagram N1 Source #
kernel with a free tip.
data KernelSliceFromSomeFreeTip (n :: N') (i :: Type -> Type) c where Source #
predicate for a kernel with a start point of its diagram given by the slice index and a free universal tip.
Property Let be in KernelSliceFromSomeFreeTip k' i ker, then holds:KernelSliceFromSomeFreeTip n c
whereslicePointi==s.DiagramParallelLRs _ _ =diagramker.slicePointk'==tip(universalConeker)
Constructors
| KernelSliceFromSomeFreeTip :: forall (k' :: N') c (i :: Type -> Type) (n :: N'). (Attestable k', Sliced (Free k') c) => Free k' c -> i c -> Kernel n c -> KernelSliceFromSomeFreeTip n i c |
Instances
| (Oriented c, Sliced i c) => Show (KernelSliceFromSomeFreeTip n i c) Source # | |
Defined in OAlg.Entity.Slice.Free Methods showsPrec :: Int -> KernelSliceFromSomeFreeTip n i c -> ShowS # show :: KernelSliceFromSomeFreeTip n i c -> String # showList :: [KernelSliceFromSomeFreeTip n i c] -> ShowS # | |
| (Distributive c, Sliced i c, XStandardEligibleConeKernel n c, XStandardEligibleConeFactorKernel n c, Typeable n) => Validable (KernelSliceFromSomeFreeTip n i c) Source # | |
Defined in OAlg.Entity.Slice.Free Methods valid :: KernelSliceFromSomeFreeTip n i c -> Statement Source # | |
Duality
toDualOpFreeDst :: (Distributive x, SlicedFree x) => Variant2 'Contravariant (Inv2 (HomFree Dst)) x (Op x) Source #
to dual operator.