Changelog for lapack-0.5.1.1
Change log for the lapack package
0.5
-
Matrix.Blockfor Block matrices. Add*Extraconstraint families to many type classes in order to handle the data stored in the extra type parameters ofMatrix. -
Format.formatnow uses custom typeConfiginstead of a plain formatString.
0.4
-
Unified
Matrixtype that provides the same type parameters across all special types. This reduces the use of type functions and improves type inference. -
Unified
transposeandadjointfunctions enabled by the newMatrixtype. -
Unpackedformat: We now support data type and according functions for unpacked triangular, symmetric and Hermitian matrices. Enables declaration e.g. of Hessenberg matrices. -
There are now two types of square matrices:
-
Square: height and width shapes match exactly -
LiberalSquare: only the sizes of height and width match
-
-
Hermitian: Definiteness properties in the type -
eigensystem,Householder.fromMatrix,LowerUpper.fromMatrixetc.: We use the new classShape.Permutablefor shapes where permutation of indices seems to make sense. We tried using liberal squares matrix factors, but this would require extra parameters and consistency checks for the shapes of the factor matrices. -
Square.fromGeneral->fromFull -
Orthogonal.affineKernelFromSpan->affineFiberFromFrame,Orthogonal.affineSpanFromKernel->affineFrameFromFiber -
Matrix.Function: New module providing generalized algebraic and transcendent functions likesqrt,exp,log. -
Matrix.Superscript: Experimental module for eye-candy notationa#^Tfor transposition anda#^Invfor inverse.
0.3.2
-
Orthogonal:project,affineKernelFromSpan,affineSpanFromKernel,leastSquaresConstraint,gaussMarkovLinearModel -
Symmetric.fromHermitian,Hermitian.fromSymmetric -
instance Monoid Matrix, especiallymemptyfor matrices with static shapes. -
Extent.Dimensions: turn from type family to data family -
Start using
doctest-extractfor simple tests
0.3.1
Matrix.Symmetric: You can now import many functions for symmetric matrices from this module. This is more natural than importing them fromTriangular.
0.3
-
Matrix data family
-
Matrix:ZeroInt->ShapeInt,zeroInt->shapeInt -
Hermitian,BandedHermitian:covariance->gramian -
Square.eigensystem: Return left eigenvectors as rows of the last matrix. This is adjoint with respect to the definition inlapack-0.2but it is consistent with the other eigenvalue and singular value decompositions.