| Copyright | (c) The University of Glasgow 2001 |
|---|---|
| License | BSD-style (see the file libraries/base/LICENSE) |
| Maintainer | libraries@haskell.org |
| Stability | stable |
| Portability | portable |
| Safe Haskell | Trustworthy |
| Language | Haskell2010 |
Prelude
Contents
Description
The Prelude: a standard module. The Prelude is imported by default into all Haskell modules unless either there is an explicit import statement for it, or the NoImplicitPrelude extension is enabled.
- data Bool :: *
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- otherwise :: Bool
- data Maybe a
- maybe :: b -> (a -> b) -> Maybe a -> b
- data Either a b
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- data Ordering :: *
- data Char :: *
- type String = [Char]
- fst :: (a, b) -> a
- snd :: (a, b) -> b
- curry :: ((a, b) -> c) -> a -> b -> c
- uncurry :: (a -> b -> c) -> (a, b) -> c
- class Eq a where
- class Eq a => Ord a where
- class Enum a where
- succ :: a -> a
- pred :: a -> a
- toEnum :: Int -> a
- fromEnum :: a -> Int
- enumFrom :: a -> [a]
- enumFromThen :: a -> a -> [a]
- enumFromTo :: a -> a -> [a]
- enumFromThenTo :: a -> a -> a -> [a]
- class Bounded a where
- data Int :: *
- data Integer :: *
- data Float :: *
- data Double :: *
- type Rational = Ratio Integer
- class Num a where
- class (Num a, Ord a) => Real a where
- toRational :: a -> Rational
- class (Real a, Enum a) => Integral a where
- class Num a => Fractional a where
- (/) :: a -> a -> a
- recip :: a -> a
- fromRational :: Rational -> a
- class Fractional a => Floating a where
- class (Real a, Fractional a) => RealFrac a where
- class (RealFrac a, Floating a) => RealFloat a where
- floatRadix :: a -> Integer
- floatDigits :: a -> Int
- floatRange :: a -> (Int, Int)
- decodeFloat :: a -> (Integer, Int)
- encodeFloat :: Integer -> Int -> a
- exponent :: a -> Int
- significand :: a -> a
- scaleFloat :: Int -> a -> a
- isNaN :: a -> Bool
- isInfinite :: a -> Bool
- isDenormalized :: a -> Bool
- isNegativeZero :: a -> Bool
- isIEEE :: a -> Bool
- atan2 :: a -> a -> a
- subtract :: Num a => a -> a -> a
- even :: Integral a => a -> Bool
- odd :: Integral a => a -> Bool
- gcd :: Integral a => a -> a -> a
- lcm :: Integral a => a -> a -> a
- (^) :: (Num a, Integral b) => a -> b -> a
- (^^) :: (Fractional a, Integral b) => a -> b -> a
- fromIntegral :: (Integral a, Num b) => a -> b
- realToFrac :: (Real a, Fractional b) => a -> b
- class Monad m where
- class Functor f where
- fmap :: (a -> b) -> f a -> f b
- mapM :: Monad m => (a -> m b) -> [a] -> m [b]
- mapM_ :: Monad m => (a -> m b) -> [a] -> m ()
- sequence :: Monad m => [m a] -> m [a]
- sequence_ :: Monad m => [m a] -> m ()
- (=<<) :: Monad m => (a -> m b) -> m a -> m b
- id :: a -> a
- const :: a -> b -> a
- (.) :: (b -> c) -> (a -> b) -> a -> c
- flip :: (a -> b -> c) -> b -> a -> c
- ($) :: (a -> b) -> a -> b
- until :: (a -> Bool) -> (a -> a) -> a -> a
- asTypeOf :: a -> a -> a
- error :: [Char] -> a
- undefined :: a
- seq :: a -> b -> b
- ($!) :: (a -> b) -> a -> b
- map :: (a -> b) -> [a] -> [b]
- (++) :: [a] -> [a] -> [a]
- filter :: (a -> Bool) -> [a] -> [a]
- head :: [a] -> a
- last :: [a] -> a
- tail :: [a] -> [a]
- init :: [a] -> [a]
- null :: [a] -> Bool
- length :: [a] -> Int
- (!!) :: [a] -> Int -> a
- reverse :: [a] -> [a]
- foldl :: (b -> a -> b) -> b -> [a] -> b
- foldl1 :: (a -> a -> a) -> [a] -> a
- foldr :: (a -> b -> b) -> b -> [a] -> b
- foldr1 :: (a -> a -> a) -> [a] -> a
- and :: [Bool] -> Bool
- or :: [Bool] -> Bool
- any :: (a -> Bool) -> [a] -> Bool
- all :: (a -> Bool) -> [a] -> Bool
- sum :: Num a => [a] -> a
- product :: Num a => [a] -> a
- concat :: [[a]] -> [a]
- concatMap :: (a -> [b]) -> [a] -> [b]
- maximum :: Ord a => [a] -> a
- minimum :: Ord a => [a] -> a
- scanl :: (b -> a -> b) -> b -> [a] -> [b]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- iterate :: (a -> a) -> a -> [a]
- repeat :: a -> [a]
- replicate :: Int -> a -> [a]
- cycle :: [a] -> [a]
- take :: Int -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- takeWhile :: (a -> Bool) -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- span :: (a -> Bool) -> [a] -> ([a], [a])
- break :: (a -> Bool) -> [a] -> ([a], [a])
- elem :: Eq a => a -> [a] -> Bool
- notElem :: Eq a => a -> [a] -> Bool
- lookup :: Eq a => a -> [(a, b)] -> Maybe b
- zip :: [a] -> [b] -> [(a, b)]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- unzip :: [(a, b)] -> ([a], [b])
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- lines :: String -> [String]
- words :: String -> [String]
- unlines :: [String] -> String
- unwords :: [String] -> String
- type ShowS = String -> String
- class Show a where
- shows :: Show a => a -> ShowS
- showChar :: Char -> ShowS
- showString :: String -> ShowS
- showParen :: Bool -> ShowS -> ShowS
- type ReadS a = String -> [(a, String)]
- class Read a where
- reads :: Read a => ReadS a
- readParen :: Bool -> ReadS a -> ReadS a
- read :: Read a => String -> a
- lex :: ReadS String
- data IO a :: * -> *
- putChar :: Char -> IO ()
- putStr :: String -> IO ()
- putStrLn :: String -> IO ()
- print :: Show a => a -> IO ()
- getChar :: IO Char
- getLine :: IO String
- getContents :: IO String
- interact :: (String -> String) -> IO ()
- type FilePath = String
- readFile :: FilePath -> IO String
- writeFile :: FilePath -> String -> IO ()
- appendFile :: FilePath -> String -> IO ()
- readIO :: Read a => String -> IO a
- readLn :: Read a => IO a
- type IOError = IOException
- ioError :: IOError -> IO a
- userError :: String -> IOError
Standard types, classes and related functions
Basic data types
data Bool :: *
The Maybe type encapsulates an optional value. A value of type either contains a value of type Maybe aa (represented as ), or it is empty (represented as Just aNothing). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error.
The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing. A richer error monad can be built using the Either type.
Instances
| Alternative Maybe | |
| Monad Maybe | |
| Functor Maybe | |
| MonadFix Maybe | |
| MonadPlus Maybe | |
| Applicative Maybe | |
| Foldable Maybe | |
| Traversable Maybe | |
| Generic1 Maybe | |
| Typeable1 Maybe | |
| Eq a => Eq (Maybe a) | |
| Data a => Data (Maybe a) | |
| Ord a => Ord (Maybe a) | |
| Read a => Read (Maybe a) | |
| Show a => Show (Maybe a) | |
| Generic (Maybe a) | |
| Monoid a => Monoid (Maybe a) | Lift a semigroup into |
| Typeable (* -> *) Maybe | |
| type Rep1 Maybe | |
| type Rep (Maybe a) | |
| type (==) (Maybe k) a b |
The Either type represents values with two possibilities: a value of type is either Either a b or Left a.Right b
The Either type is sometimes used to represent a value which is either correct or an error; by convention, the Left constructor is used to hold an error value and the Right constructor is used to hold a correct value (mnemonic: "right" also means "correct").
Instances
| Monad (Either e) | |
| Functor (Either a) | |
| MonadFix (Either e) | |
| Applicative (Either e) | |
| Foldable (Either a) | |
| Traversable (Either a) | |
| Generic1 (Either a) | |
| (Eq a, Eq b) => Eq (Either a b) | |
| (Data a, Data b) => Data (Either a b) | |
| (Ord a, Ord b) => Ord (Either a b) | |
| (Read a, Read b) => Read (Either a b) | |
| (Show a, Show b) => Show (Either a b) | |
| Generic (Either a b) | |
| Typeable (* -> * -> *) Either | |
| type Rep1 (Either a) | |
| type Rep (Either a b) | |
| type (==) (Either k k1) a b |
data Ordering :: *
data Char :: *
The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) characters (see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 characters), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char.
To convert a Char to or from the corresponding Int value defined by Unicode, use toEnum and fromEnum from the Enum class respectively (or equivalently ord and chr).
Tuples
curry :: ((a, b) -> c) -> a -> b -> c Source
curry converts an uncurried function to a curried function.
uncurry :: (a -> b -> c) -> (a, b) -> c Source
uncurry converts a curried function to a function on pairs.
Basic type classes
class Eq a where
The Eq class defines equality (==) and inequality (/=). All the basic datatypes exported by the Prelude are instances of Eq, and Eq may be derived for any datatype whose constituents are also instances of Eq.
Instances
| Eq Bool | |
| Eq Char | |
| Eq Double | |
| Eq Float | |
| Eq Int | |
| Eq Int8 | |
| Eq Int16 | |
| Eq Int32 | |
| Eq Int64 | |
| Eq Integer | |
| Eq Ordering | |
| Eq Word | |
| Eq Word8 | |
| Eq Word16 | |
| Eq Word32 | |
| Eq Word64 | |
| Eq () | |
| Eq Number | |
| Eq Lexeme | |
| Eq Fingerprint | |
| Eq TyCon | |
| Eq TypeRep | |
| Eq Associativity | |
| Eq Fixity | |
| Eq Arity | |
| Eq Any | |
| Eq All | |
| Eq ArithException | |
| Eq ErrorCall | |
| Eq IOException | |
| Eq MaskingState | |
| Eq CUIntMax | |
| Eq CIntMax | |
| Eq CUIntPtr | |
| Eq CIntPtr | |
| Eq CSUSeconds | |
| Eq CUSeconds | |
| Eq CTime | |
| Eq CClock | |
| Eq CSigAtomic | |
| Eq CWchar | |
| Eq CSize | |
| Eq CPtrdiff | |
| Eq CDouble | |
| Eq CFloat | |
| Eq CULLong | |
| Eq CLLong | |
| Eq CULong | |
| Eq CLong | |
| Eq CUInt | |
| Eq CInt | |
| Eq CUShort | |
| Eq CShort | |
| Eq CUChar | |
| Eq CSChar | |
| Eq CChar | |
| Eq GeneralCategory | |
| Eq IntPtr | |
| Eq WordPtr | |
| Eq BufferState | |
| Eq CodingProgress | |
| Eq SeekMode | |
| Eq IODeviceType | |
| Eq NewlineMode | |
| Eq Newline | |
| Eq BufferMode | |
| Eq Handle | |
| Eq IOErrorType | |
| Eq ExitCode | |
| Eq ArrayException | |
| Eq AsyncException | |
| Eq Errno | |
| Eq Fd | |
| Eq CRLim | |
| Eq CTcflag | |
| Eq CSpeed | |
| Eq CCc | |
| Eq CUid | |
| Eq CNlink | |
| Eq CGid | |
| Eq CSsize | |
| Eq CPid | |
| Eq COff | |
| Eq CMode | |
| Eq CIno | |
| Eq CDev | |
| Eq ThreadStatus | |
| Eq BlockReason | |
| Eq ThreadId | |
| Eq IOMode | |
| Eq Event | |
| Eq FdKey | |
| Eq TimeoutKey | |
| Eq HandlePosn | |
| Eq TyCon | |
| Eq TypeRep | |
| Eq TypeRepKey | |
| Eq SomeSymbol | |
| Eq SomeNat | |
| Eq Version | |
| Eq Fixity | |
| Eq ConstrRep | |
| Eq DataRep | |
| Eq Constr | Equality of constructors |
| Eq Unique | |
| Eq SpecConstrAnnotation | |
| Eq a => Eq [a] | |
| Eq a => Eq (Ratio a) | |
| Eq (StablePtr a) | |
| Eq (Ptr a) | |
| Eq (FunPtr a) | |
| Eq (U1 p) | |
| Eq p => Eq (Par1 p) | |
| Eq a => Eq (Maybe a) | |
| Eq a => Eq (Down a) | |
| Eq a => Eq (Last a) | |
| Eq a => Eq (First a) | |
| Eq a => Eq (Product a) | |
| Eq a => Eq (Sum a) | |
| Eq a => Eq (Dual a) | |
| Eq (IORef a) | |
| Eq (MVar a) | |
| Eq (ForeignPtr a) | |
| Eq (TVar a) | |
| Eq (Chan a) | |
| Eq a => Eq (ZipList a) | |
| Eq a => Eq (Complex a) | |
| Eq (Fixed a) | |
| Eq (StableName a) | |
| (Eq a, Eq b) => Eq (Either a b) | |
| Eq (f p) => Eq (Rec1 f p) | |
| (Eq a, Eq b) => Eq (a, b) | |
| Eq (STRef s a) | |
| Eq (Proxy k s) | |
| Eq c => Eq (K1 i c p) | |
| (Eq (f p), Eq (g p)) => Eq ((:+:) f g p) | |
| (Eq (f p), Eq (g p)) => Eq ((:*:) f g p) | |
| Eq (f (g p)) => Eq ((:.:) f g p) | |
| (Eq a, Eq b, Eq c) => Eq (a, b, c) | |
| Eq ((:~:) k a b) | |
| Eq (Coercion k a b) | |
| Eq (f p) => Eq (M1 i c f p) | |
| (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
| (Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
The Ord class is used for totally ordered datatypes.
Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord. The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.
Minimal complete definition: either compare or <=. Using compare can be more efficient for complex types.
Methods
(>=) :: a -> a -> Bool infix 4
(<=) :: a -> a -> Bool infix 4
max :: a -> a -> a
min :: a -> a -> a
Instances
Class Enum defines operations on sequentially ordered types.
The enumFrom... methods are used in Haskell's translation of arithmetic sequences.
Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.
For any type that is an instance of class Bounded as well as Enum, the following should hold:
- The calls
andsuccmaxBoundshould result in a runtime error.predminBound fromEnumandtoEnumshould give a runtime error if the result value is not representable in the result type. For example,is an error.toEnum7 ::BoolenumFromandenumFromThenshould be defined with an implicit bound, thus:
enumFrom x = enumFromTo x maxBound enumFromThen x y = enumFromThenTo x y bound where bound | fromEnum y >= fromEnum x = maxBound | otherwise = minBound
Methods
the successor of a value. For numeric types, succ adds 1.
the predecessor of a value. For numeric types, pred subtracts 1.
Convert from an Int.
Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.
Used in Haskell's translation of [n..].
enumFromThen :: a -> a -> [a] Source
Used in Haskell's translation of [n,n'..].
enumFromTo :: a -> a -> [a] Source
Used in Haskell's translation of [n..m].
enumFromThenTo :: a -> a -> a -> [a] Source
Used in Haskell's translation of [n,n'..m].
Instances
| Enum Bool | |
| Enum Char | |
| Enum Double | |
| Enum Float | |
| Enum Int | |
| Enum Int8 | |
| Enum Int16 | |
| Enum Int32 | |
| Enum Int64 | |
| Enum Integer | |
| Enum Ordering | |
| Enum Word | |
| Enum Word8 | |
| Enum Word16 | |
| Enum Word32 | |
| Enum Word64 | |
| Enum () | |
| Enum CUIntMax | |
| Enum CIntMax | |
| Enum CUIntPtr | |
| Enum CIntPtr | |
| Enum CSUSeconds | |
| Enum CUSeconds | |
| Enum CTime | |
| Enum CClock | |
| Enum CSigAtomic | |
| Enum CWchar | |
| Enum CSize | |
| Enum CPtrdiff | |
| Enum CDouble | |
| Enum CFloat | |
| Enum CULLong | |
| Enum CLLong | |
| Enum CULong | |
| Enum CLong | |
| Enum CUInt | |
| Enum CInt | |
| Enum CUShort | |
| Enum CShort | |
| Enum CUChar | |
| Enum CSChar | |
| Enum CChar | |
| Enum GeneralCategory | |
| Enum IntPtr | |
| Enum WordPtr | |
| Enum SeekMode | |
| Enum Fd | |
| Enum CRLim | |
| Enum CTcflag | |
| Enum CSpeed | |
| Enum CCc | |
| Enum CUid | |
| Enum CNlink | |
| Enum CGid | |
| Enum CSsize | |
| Enum CPid | |
| Enum COff | |
| Enum CMode | |
| Enum CIno | |
| Enum CDev | |
| Enum IOMode | |
| Integral a => Enum (Ratio a) | |
| Enum (Fixed a) | |
| Enum (Proxy k s) | |
| (~) k a b => Enum ((:~:) k a b) | |
| Coercible k a b => Enum (Coercion k a b) |
The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.
The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.
Instances
Numbers
Numeric types
data Int :: *
data Integer :: *
Arbitrary-precision integers.
data Float :: *
Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.
data Double :: *
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
Numeric type classes
Basic numeric class.
Minimal complete definition: all except negate or (-)
Methods
(+), (*), (-) :: a -> a -> a infixl 7 *infixl 6 +, - Source
Unary negation.
Absolute value.
Sign of a number. The functions abs and signum should satisfy the law:
abs x * signum x == x
For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).
fromInteger :: Integer -> a Source
Conversion from an Integer. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer, so such literals have type (.Num a) => a
Instances
| Num Double | |
| Num Float | |
| Num Int | |
| Num Int8 | |
| Num Int16 | |
| Num Int32 | |
| Num Int64 | |
| Num Integer | |
| Num Word | |
| Num Word8 | |
| Num Word16 | |
| Num Word32 | |
| Num Word64 | |
| Num CUIntMax | |
| Num CIntMax | |
| Num CUIntPtr | |
| Num CIntPtr | |
| Num CSUSeconds | |
| Num CUSeconds | |
| Num CTime | |
| Num CClock | |
| Num CSigAtomic | |
| Num CWchar | |
| Num CSize | |
| Num CPtrdiff | |
| Num CDouble | |
| Num CFloat | |
| Num CULLong | |
| Num CLLong | |
| Num CULong | |
| Num CLong | |
| Num CUInt | |
| Num CInt | |
| Num CUShort | |
| Num CShort | |
| Num CUChar | |
| Num CSChar | |
| Num CChar | |
| Num IntPtr | |
| Num WordPtr | |
| Num Fd | |
| Num CRLim | |
| Num CTcflag | |
| Num CSpeed | |
| Num CCc | |
| Num CUid | |
| Num CNlink | |
| Num CGid | |
| Num CSsize | |
| Num CPid | |
| Num COff | |
| Num CMode | |
| Num CIno | |
| Num CDev | |
| Integral a => Num (Ratio a) | |
| Num a => Num (Product a) | |
| Num a => Num (Sum a) | |
| RealFloat a => Num (Complex a) | |
| HasResolution a => Num (Fixed a) |
class (Num a, Ord a) => Real a where Source
Methods
toRational :: a -> Rational Source
the rational equivalent of its real argument with full precision
Instances
class (Real a, Enum a) => Integral a where Source
Methods
quot :: a -> a -> a infixl 7 Source
integer division truncated toward zero
rem :: a -> a -> a infixl 7 Source
integer remainder, satisfying
(x `quot` y)*y + (x `rem` y) == x
div :: a -> a -> a infixl 7 Source
integer division truncated toward negative infinity
mod :: a -> a -> a infixl 7 Source
integer modulus, satisfying
(x `div` y)*y + (x `mod` y) == x
quotRem :: a -> a -> (a, a) Source
divMod :: a -> a -> (a, a) Source
toInteger :: a -> Integer Source
conversion to Integer
Instances
class Num a => Fractional a where Source
Fractional numbers, supporting real division.
Minimal complete definition: fromRational and (recip or ()/)
Minimal complete definition
fromRational, (recip | (/))
Methods
(/) :: a -> a -> a infixl 7 Source
fractional division
reciprocal fraction
fromRational :: Rational -> a Source
Conversion from a Rational (that is ). A floating literal stands for an application of Ratio IntegerfromRational to a value of type Rational, so such literals have type (.Fractional a) => a
Instances
| Fractional Double | |
| Fractional Float | |
| Fractional CDouble | |
| Fractional CFloat | |
| Integral a => Fractional (Ratio a) | |
| RealFloat a => Fractional (Complex a) | |
| HasResolution a => Fractional (Fixed a) |
class Fractional a => Floating a where Source
Trigonometric and hyperbolic functions and related functions.
Minimal complete definition: pi, exp, log, sin, cos, sinh, cosh, asin, acos, atan, asinh, acosh and atanh
Minimal complete definition
pi, exp, log, sin, cos, asin, atan, acos, sinh, cosh, asinh, atanh, acosh
class (Real a, Fractional a) => RealFrac a where Source
Extracting components of fractions.
Minimal complete definition: properFraction
Minimal complete definition
Methods
properFraction :: Integral b => a -> (b, a) Source
The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:
nis an integral number with the same sign asx; andfis a fraction with the same type and sign asx, and with absolute value less than1.
The default definitions of the ceiling, floor, truncate and round functions are in terms of properFraction.
truncate :: Integral b => a -> b Source
returns the integer nearest truncate xx between zero and x
round :: Integral b => a -> b Source
returns the nearest integer to round xx; the even integer if x is equidistant between two integers
ceiling :: Integral b => a -> b Source
returns the least integer not less than ceiling xx
floor :: Integral b => a -> b Source
returns the greatest integer not greater than floor xx
class (RealFrac a, Floating a) => RealFloat a where Source
Efficient, machine-independent access to the components of a floating-point number.
Minimal complete definition: all except exponent, significand, scaleFloat and atan2
Minimal complete definition
floatRadix, floatDigits, floatRange, decodeFloat, encodeFloat, isNaN, isInfinite, isDenormalized, isNegativeZero, isIEEE
Methods
floatRadix :: a -> Integer Source
a constant function, returning the radix of the representation (often 2)
floatDigits :: a -> Int Source
a constant function, returning the number of digits of floatRadix in the significand
floatRange :: a -> (Int, Int) Source
a constant function, returning the lowest and highest values the exponent may assume
decodeFloat :: a -> (Integer, Int) Source
The function decodeFloat applied to a real floating-point number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int). If yields decodeFloat x(m,n), then x is equal in value to m*b^^n, where b is the floating-point radix, and furthermore, either m and n are both zero or else b^(d-1) <= , where abs m < b^dd is the value of . In particular, floatDigits x. If the type contains a negative zero, also decodeFloat 0 = (0,0). The result of decodeFloat (-0.0) = (0,0) is unspecified if either of decodeFloat x or isNaN x is isInfinite xTrue.
encodeFloat :: Integer -> Int -> a Source
encodeFloat performs the inverse of decodeFloat in the sense that for finite x with the exception of -0.0, . uncurry encodeFloat (decodeFloat x) = x is one of the two closest representable floating-point numbers to encodeFloat m nm*b^^n (or ±Infinity if overflow occurs); usually the closer, but if m contains too many bits, the result may be rounded in the wrong direction.
exponent corresponds to the second component of decodeFloat. and for finite nonzero exponent 0 = 0x, . If exponent x = snd (decodeFloat x) + floatDigits xx is a finite floating-point number, it is equal in value to , where significand x * b ^^ exponent xb is the floating-point radix. The behaviour is unspecified on infinite or NaN values.
significand :: a -> a Source
The first component of decodeFloat, scaled to lie in the open interval (-1,1), either 0.0 or of absolute value >= 1/b, where b is the floating-point radix. The behaviour is unspecified on infinite or NaN values.
scaleFloat :: Int -> a -> a Source
multiplies a floating-point number by an integer power of the radix
True if the argument is an IEEE "not-a-number" (NaN) value
isInfinite :: a -> Bool Source
True if the argument is an IEEE infinity or negative infinity
isDenormalized :: a -> Bool Source
True if the argument is too small to be represented in normalized format
isNegativeZero :: a -> Bool Source
True if the argument is an IEEE negative zero
True if the argument is an IEEE floating point number
a version of arctangent taking two real floating-point arguments. For real floating x and y, computes the angle (from the positive x-axis) of the vector from the origin to the point atan2 y x(x,y). returns a value in the range [atan2 y x-pi, pi]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. , with atan2 y 1y in a type that is RealFloat, should return the same value as . A default definition of atan yatan2 is provided, but implementors can provide a more accurate implementation.
Numeric functions
gcd :: Integral a => a -> a -> a Source
is the non-negative factor of both gcd x yx and y of which every common factor of x and y is also a factor; for example , gcd 4 2 = 2, gcd (-4) 6 = 2 = gcd 0 44. = gcd 0 00. (That is, the common divisor that is "greatest" in the divisibility preordering.)
Note: Since for signed fixed-width integer types, , the result may be negative if one of the arguments is abs minBound < 0 (and necessarily is if the other is minBound0 or ) for such types.minBound
lcm :: Integral a => a -> a -> a Source
is the smallest positive integer that both lcm x yx and y divide.
(^) :: (Num a, Integral b) => a -> b -> a infixr 8 Source
raise a number to a non-negative integral power
(^^) :: (Fractional a, Integral b) => a -> b -> a infixr 8 Source
raise a number to an integral power
fromIntegral :: (Integral a, Num b) => a -> b Source
general coercion from integral types
realToFrac :: (Real a, Fractional b) => a -> b Source
general coercion to fractional types
Monads and functors
The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.
Minimal complete definition: >>= and return.
Instances of Monad should satisfy the following laws:
return a >>= k == k a m >>= return == m m >>= (\x -> k x >>= h) == (m >>= k) >>= h
Instances of both Monad and Functor should additionally satisfy the law:
fmap f xs == xs >>= return . f
The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.
Methods
(>>=) :: forall a b. m a -> (a -> m b) -> m b infixl 1 Source
Sequentially compose two actions, passing any value produced by the first as an argument to the second.
(>>) :: forall a b. m a -> m b -> m b infixl 1 Source
Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.
Inject a value into the monadic type.
Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.
The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:
fmap id == id fmap (f . g) == fmap f . fmap g
The instances of Functor for lists, Maybe and IO satisfy these laws.
Instances
| Functor [] | |
| Functor IO | |
| Functor Maybe | |
| Functor ReadP | |
| Functor ReadPrec | |
| Functor STM | |
| Functor Handler | |
| Functor ZipList | |
| Functor ArgDescr | |
| Functor OptDescr | |
| Functor ArgOrder | |
| Functor ((->) r) | |
| Functor (Either a) | |
| Functor ((,) a) | |
| Functor (ST s) | |
| Functor (Proxy *) | |
| Arrow a => Functor (ArrowMonad a) | |
| Functor (ST s) | |
| Monad m => Functor (WrappedMonad m) | |
| Functor (Const m) | |
| Arrow a => Functor (WrappedArrow a b) |
sequence :: Monad m => [m a] -> m [a] Source
Evaluate each action in the sequence from left to right, and collect the results.
sequence_ :: Monad m => [m a] -> m () Source
Evaluate each action in the sequence from left to right, and ignore the results.
(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 Source
Same as >>=, but with the arguments interchanged.
Miscellaneous functions
flip :: (a -> b -> c) -> b -> a -> c Source
takes its (first) two arguments in the reverse order of flip ff.
($) :: (a -> b) -> a -> b infixr 0 Source
Application operator. This operator is redundant, since ordinary application (f x) means the same as (f . However, $ x)$ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:
f $ g $ h x = f (g (h x))
It is also useful in higher-order situations, such as , or map ($ 0) xs.zipWith ($) fs xs
until :: (a -> Bool) -> (a -> a) -> a -> a Source
yields the result of applying until p ff until p holds.
seq :: a -> b -> b
Evaluates its first argument to head normal form, and then returns its second argument as the result.
($!) :: (a -> b) -> a -> b infixr 0 Source
Strict (call-by-value) application, defined in terms of seq.
List operations
map :: (a -> b) -> [a] -> [b] Source
map f xs is the list obtained by applying f to each element of xs, i.e.,
map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn] map f [x1, x2, ...] == [f x1, f x2, ...]
(++) :: [a] -> [a] -> [a] infixr 5 Source
Append two lists, i.e.,
[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn] [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]
If the first list is not finite, the result is the first list.
filter :: (a -> Bool) -> [a] -> [a] Source
filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,
filter p xs = [ x | x <- xs, p x]
Return all the elements of a list except the last one. The list must be non-empty.
O(n). length returns the length of a finite list as an Int. It is an instance of the more general genericLength, the result type of which may be any kind of number.
(!!) :: [a] -> Int -> a infixl 9 Source
List index (subscript) operator, starting from 0. It is an instance of the more general genericIndex, which takes an index of any integral type.
reverse xs returns the elements of xs in reverse order. xs must be finite.
Reducing lists (folds)
foldl :: (b -> a -> b) -> b -> [a] -> b Source
foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:
foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn
The list must be finite.
foldr :: (a -> b -> b) -> b -> [a] -> b Source
foldr, applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
Special folds
product :: Num a => [a] -> a Source
The product function computes the product of a finite list of numbers.
Building lists
Scans
Infinite lists
iterate :: (a -> a) -> a -> [a] Source
iterate f x returns an infinite list of repeated applications of f to x:
iterate f x == [x, f x, f (f x), ...]
replicate :: Int -> a -> [a] Source
replicate n x is a list of length n with x the value of every element. It is an instance of the more general genericReplicate, in which n may be of any integral type.
cycle ties a finite list into a circular one, or equivalently, the infinite repetition of the original list. It is the identity on infinite lists.
Sublists
take :: Int -> [a] -> [a] Source
take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if n > :length xs
take 5 "Hello World!" == "Hello" take 3 [1,2,3,4,5] == [1,2,3] take 3 [1,2] == [1,2] take 3 [] == [] take (-1) [1,2] == [] take 0 [1,2] == []
It is an instance of the more general genericTake, in which n may be of any integral type.
drop :: Int -> [a] -> [a] Source
drop n xs returns the suffix of xs after the first n elements, or [] if n > :length xs
drop 6 "Hello World!" == "World!" drop 3 [1,2,3,4,5] == [4,5] drop 3 [1,2] == [] drop 3 [] == [] drop (-1) [1,2] == [1,2] drop 0 [1,2] == [1,2]
It is an instance of the more general genericDrop, in which n may be of any integral type.
splitAt :: Int -> [a] -> ([a], [a]) Source
splitAt n xs returns a tuple where first element is xs prefix of length n and second element is the remainder of the list:
splitAt 6 "Hello World!" == ("Hello ","World!") splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5]) splitAt 1 [1,2,3] == ([1],[2,3]) splitAt 3 [1,2,3] == ([1,2,3],[]) splitAt 4 [1,2,3] == ([1,2,3],[]) splitAt 0 [1,2,3] == ([],[1,2,3]) splitAt (-1) [1,2,3] == ([],[1,2,3])It is equivalent to ( when take n xs, drop n xs)n is not _|_ (splitAt _|_ xs = _|_). splitAt is an instance of the more general genericSplitAt, in which n may be of any integral type.
takeWhile :: (a -> Bool) -> [a] -> [a] Source
takeWhile, applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p:
takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2] takeWhile (< 9) [1,2,3] == [1,2,3] takeWhile (< 0) [1,2,3] == []
span :: (a -> Bool) -> [a] -> ([a], [a]) Source
span, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that satisfy p and second element is the remainder of the list:
span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4]) span (< 9) [1,2,3] == ([1,2,3],[]) span (< 0) [1,2,3] == ([],[1,2,3])
break :: (a -> Bool) -> [a] -> ([a], [a]) Source
break, applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list:
break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4]) break (< 9) [1,2,3] == ([],[1,2,3]) break (> 9) [1,2,3] == ([1,2,3],[])
Searching lists
lookup :: Eq a => a -> [(a, b)] -> Maybe b Source
lookup key assocs looks up a key in an association list.
Zipping and unzipping lists
zip :: [a] -> [b] -> [(a, b)] Source
zip takes two lists and returns a list of corresponding pairs. If one input list is short, excess elements of the longer list are discarded.
unzip :: [(a, b)] -> ([a], [b]) Source
unzip transforms a list of pairs into a list of first components and a list of second components.
Functions on strings
lines :: String -> [String] Source
lines breaks a string up into a list of strings at newline characters. The resulting strings do not contain newlines.
words :: String -> [String] Source
words breaks a string up into a list of words, which were delimited by white space.
Converting to and from String
Converting to String
Conversion of values to readable Strings.
Minimal complete definition: showsPrec or show.
Derived instances of Show have the following properties, which are compatible with derived instances of Read:
- The result of
showis a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrecwill produce infix applications of the constructor. - the representation will be enclosed in parentheses if the precedence of the top-level constructor in
xis less thand(associativity is ignored). Thus, ifdis0then the result is never surrounded in parentheses; ifdis11it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
showwill produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^: is ignored. For example,
produces the stringshow(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)".
Methods
Arguments
| :: Int | the operator precedence of the enclosing context (a number from |
| -> a | the value to be converted to a |
| -> ShowS |
Convert a value to a readable String.
showsPrec should satisfy the law
showsPrec d x r ++ s == showsPrec d x (r ++ s)
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.
Instances
showChar :: Char -> ShowS Source
utility function converting a Char to a show function that simply prepends the character unchanged.
showString :: String -> ShowS Source
utility function converting a String to a show function that simply prepends the string unchanged.
Converting from String
Parsing of Strings, producing values.
Minimal complete definition: readsPrec (or, for GHC only, readPrec)
Derived instances of Read make the following assumptions, which derived instances of Show obey:
- If the constructor is defined to be an infix operator, then the derived
Readinstance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Readwill parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Readinstance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read in Haskell 2010 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5Note that right-associativity of :^: is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Methods
Arguments
| :: Int | the operator precedence of the enclosing context (a number from |
| -> ReadS a |
attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
Derived instances of Read and Show satisfy the following:
That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.
Instances
read :: Read a => String -> a Source
The read function reads input from a string, which must be completely consumed by the input process.
The lex function reads a single lexeme from the input, discarding initial white space, and returning the characters that constitute the lexeme. If the input string contains only white space, lex returns a single successful `lexeme' consisting of the empty string. (Thus .) If there is no legal lexeme at the beginning of the input string, lex "" = [("","")]lex fails (i.e. returns []).
This lexer is not completely faithful to the Haskell lexical syntax in the following respects:
- Qualified names are not handled properly
- Octal and hexadecimal numerics are not recognized as a single token
- Comments are not treated properly
Basic Input and output
data IO a :: * -> *
A value of type is a computation which, when performed, does some I/O before returning a value of type IO aa.
There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main.
IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.
Simple I/O operations
Output functions
print :: Show a => a -> IO () Source
The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show; print converts values to strings for output using the show operation and adds a newline.
For example, a program to print the first 20 integers and their powers of 2 could be written as:
main = print ([(n, 2^n) | n <- [0..19]])
Input functions
getContents :: IO String Source
The getContents operation returns all user input as a single string, which is read lazily as it is needed (same as hGetContents stdin).
interact :: (String -> String) -> IO () Source
The interact function takes a function of type String->String as its argument. The entire input from the standard input device is passed to this function as its argument, and the resulting string is output on the standard output device.
Files
File and directory names are values of type String, whose precise meaning is operating system dependent. Files can be opened, yielding a handle which can then be used to operate on the contents of that file.
readFile :: FilePath -> IO String Source
The readFile function reads a file and returns the contents of the file as a string. The file is read lazily, on demand, as with getContents.
writeFile :: FilePath -> String -> IO () Source
The computation writeFile file str function writes the string str, to the file file.
appendFile :: FilePath -> String -> IO () Source
The computation appendFile file str function appends the string str, to the file file.
Note that writeFile and appendFile write a literal string to a file. To write a value of any printable type, as with print, use the show function to convert the value to a string first.
main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])
Exception handling in the I/O monad
type IOError = IOException Source
The Haskell 2010 type for exceptions in the IO monad. Any I/O operation may raise an IOError instead of returning a result. For a more general type of exception, including also those that arise in pure code, see Control.Exception.Exception.
In Haskell 2010, this is an opaque type.