-
- Notifications
You must be signed in to change notification settings - Fork 11.2k
Closed
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity
Description
Your current environment
The output of python collect_env.py
============================== System Info ============================== OS : Ubuntu 24.04.1 LTS (x86_64) GCC version : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 Clang version : Could not collect CMake version : version 3.28.3 Libc version : glibc-2.39 ============================== PyTorch Info ============================== PyTorch version : 2.7.0+cu126 Is debug build : False CUDA used to build PyTorch : 12.6 ROCM used to build PyTorch : N/A ============================== Python Environment ============================== Python version : 3.12.0 (main, Oct 3 2023, 01:27:23) [Clang 17.0.1 ] (64-bit runtime) Python platform : Linux-6.8.0-58-generic-x86_64-with-glibc2.39 ============================== CUDA / GPU Info ============================== Is CUDA available : True CUDA runtime version : Could not collect CUDA_MODULE_LOADING set to : LAZY GPU models and configuration : GPU 0: NVIDIA H100 NVL GPU 1: NVIDIA H100 NVL Nvidia driver version : 570.133.07 cuDNN version : Could not collect HIP runtime version : N/A MIOpen runtime version : N/A Is XNNPACK available : True ============================== CPU Info ============================== Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 52 bits physical, 57 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: AuthenticAMD BIOS Vendor ID: Advanced Micro Devices, Inc. Model name: AMD EPYC 9174F 16-Core Processor BIOS Model name: AMD EPYC 9174F 16-Core Processor Unknown CPU @ 4.1GHz BIOS CPU family: 107 CPU family: 25 Model: 17 Thread(s) per core: 2 Core(s) per socket: 16 Socket(s): 1 Stepping: 1 Frequency boost: enabled CPU(s) scaling MHz: 47% CPU max MHz: 4408.2998 CPU min MHz: 1500.0000 BogoMIPS: 8200.40 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc amd_ibpb_ret arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d debug_swap Virtualization: AMD-V L1d cache: 512 KiB (16 instances) L1i cache: 512 KiB (16 instances) L2 cache: 16 MiB (16 instances) L3 cache: 256 MiB (8 instances) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Mitigation; Safe RET Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected ============================== Versions of relevant libraries ============================== [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.6.4.1 [pip3] nvidia-cuda-cupti-cu12==12.6.80 [pip3] nvidia-cuda-nvrtc-cu12==12.6.77 [pip3] nvidia-cuda-runtime-cu12==12.6.77 [pip3] nvidia-cudnn-cu12==9.5.1.17 [pip3] nvidia-cufft-cu12==11.3.0.4 [pip3] nvidia-cufile-cu12==1.11.1.6 [pip3] nvidia-curand-cu12==10.3.7.77 [pip3] nvidia-cusolver-cu12==11.7.1.2 [pip3] nvidia-cusparse-cu12==12.5.4.2 [pip3] nvidia-cusparselt-cu12==0.6.3 [pip3] nvidia-ml-py==12.575.51 [pip3] nvidia-nccl-cu12==2.26.2 [pip3] nvidia-nvjitlink-cu12==12.6.85 [pip3] nvidia-nvtx-cu12==12.6.77 [pip3] pynvml==12.0.0 [pip3] pyzmq==27.0.0 [pip3] torch==2.7.0 [pip3] torchaudio==2.7.0 [pip3] torchvision==0.22.0 [pip3] transformers==4.52.4 [pip3] triton==3.3.0 [conda] Could not collect ============================== vLLM Info ============================== ROCM Version : Could not collect Neuron SDK Version : N/A vLLM Version : 0.9.1 vLLM Build Flags: CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled GPU Topology: GPU0 GPU1 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X NV12 0-31 0 N/A GPU1 NV12 X 0-31 0 N/A Legend: X = Self SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI) NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU) PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge) PIX = Connection traversing at most a single PCIe bridge NV# = Connection traversing a bonded set of # NVLinks ============================== Environment Variables ============================== NCCL_CUMEM_ENABLE=0 PYTORCH_NVML_BASED_CUDA_CHECK=1 TORCHINDUCTOR_COMPILE_THREADS=1 CUDA_MODULE_LOADING=LAZY 🐛 Describe the bug
The mlp1 layer in the SkyworkR1VChatModel for Skywork-R1V3-38B, does not support quantization on the linear layers, and causes failures when loading quantized models (FP8, BNB, etc).
mlp1.1.weight_scale not supported/recognized
vllm/vllm/model_executor/models/skyworkr1v.py
Lines 736 to 749 in b4f0b5f
| def _init_mlp1(self, config: PretrainedConfig) -> nn.Sequential: | |
| vit_hidden_size = config.vision_config.hidden_size | |
| llm_hidden_size = config.text_config.hidden_size | |
| return nn.Sequential( | |
| nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio)**2), | |
| ReplicatedLinear(vit_hidden_size * | |
| int(1 / self.downsample_ratio)**2, | |
| llm_hidden_size, | |
| return_bias=False), | |
| nn.GELU(), | |
| ReplicatedLinear(llm_hidden_size, | |
| llm_hidden_size, | |
| return_bias=False), |
This can be fixed by swapping out the ReplicatedLinear layers for
mlp_in_dim = vit_hidden_size * int(1 / self.downsample_ratio)**2 return nn.Sequential( nn.LayerNorm(mlp_in_dim), ColumnParallelLinear(mlp_in_dim, <---- llm_hidden_size, bias=True, quant_config=quant_config, return_bias=False), nn.GELU(), RowParallelLinear(llm_hidden_size, <---- llm_hidden_size, bias=True, quant_config=quant_config, return_bias=False), ) ColumnParallelLinear and RowParallelLinear, which support quantized weight_scale values
@pengyuange @skydownacai is this a change that would play well with the earlier SkyworkR1V models?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't workingstaleOver 90 days of inactivityOver 90 days of inactivity