|
| 1 | +/* A C++ program to answer queries to check whether |
| 2 | +the substrings are palindrome or not efficiently */ |
| 3 | +#include <bits/stdc++.h> |
| 4 | +using namespace std; |
| 5 | + |
| 6 | +#define p 101 |
| 7 | +#define MOD 1000000007 |
| 8 | + |
| 9 | +// Structure to represent a query. A query consists |
| 10 | +// of (L, R) and we have to answer whether the substring |
| 11 | +// from index-L to R is a palindrome or not |
| 12 | +struct Query { |
| 13 | +int L, R; |
| 14 | +}; |
| 15 | + |
| 16 | +// A function to check if a string str is palindrome |
| 17 | +// in the range L to R |
| 18 | +bool isPalindrome(string str, int L, int R) |
| 19 | +{ |
| 20 | +// Keep comparing characters while they are same |
| 21 | +while (R > L) |
| 22 | +if (str[L++] != str[R--]) |
| 23 | +return (false); |
| 24 | +return (true); |
| 25 | +} |
| 26 | + |
| 27 | +// A Function to find pow (base, exponent) % MOD |
| 28 | +// in log (exponent) time |
| 29 | +unsigned long long int modPow( |
| 30 | +unsigned long long int base, |
| 31 | +unsigned long long int exponent) |
| 32 | +{ |
| 33 | +if (exponent == 0) |
| 34 | +return 1; |
| 35 | +if (exponent == 1) |
| 36 | +return base; |
| 37 | + |
| 38 | +unsigned long long int temp = modPow(base, exponent / 2); |
| 39 | + |
| 40 | +if (exponent % 2 == 0) |
| 41 | +return (temp % MOD * temp % MOD) % MOD; |
| 42 | +else |
| 43 | +return (((temp % MOD * temp % MOD) % MOD) |
| 44 | +* base % MOD) |
| 45 | +% MOD; |
| 46 | +} |
| 47 | + |
| 48 | +// A Function to calculate Modulo Multiplicative Inverse of 'n' |
| 49 | +unsigned long long int findMMI(unsigned long long int n) |
| 50 | +{ |
| 51 | +return modPow(n, MOD - 2); |
| 52 | +} |
| 53 | + |
| 54 | +// A Function to calculate the prefix hash |
| 55 | +void computePrefixHash( |
| 56 | +string str, int n, |
| 57 | +unsigned long long int prefix[], |
| 58 | +unsigned long long int power[]) |
| 59 | +{ |
| 60 | +prefix[0] = 0; |
| 61 | +prefix[1] = str[0]; |
| 62 | + |
| 63 | +for (int i = 2; i <= n; i++) |
| 64 | +prefix[i] = (prefix[i - 1] % MOD |
| 65 | ++ (str[i - 1] % MOD |
| 66 | +* power[i - 1] % MOD) |
| 67 | +% MOD) |
| 68 | +% MOD; |
| 69 | + |
| 70 | +return; |
| 71 | +} |
| 72 | + |
| 73 | +// A Function to calculate the suffix hash |
| 74 | +// Suffix hash is nothing but the prefix hash of |
| 75 | +// the reversed string |
| 76 | +void computeSuffixHash( |
| 77 | +string str, int n, |
| 78 | +unsigned long long int suffix[], |
| 79 | +unsigned long long int power[]) |
| 80 | +{ |
| 81 | +suffix[0] = 0; |
| 82 | +suffix[1] = str[n - 1]; |
| 83 | + |
| 84 | +for (int i = n - 2, j = 2; i >= 0 && j <= n; i--, j++) |
| 85 | +suffix[j] = (suffix[j - 1] % MOD |
| 86 | ++ (str[i] % MOD |
| 87 | +* power[j - 1] % MOD) |
| 88 | +% MOD) |
| 89 | +% MOD; |
| 90 | +return; |
| 91 | +} |
| 92 | + |
| 93 | +// A Function to answer the Queries |
| 94 | +void queryResults(string str, Query q[], int m, int n, |
| 95 | +unsigned long long int prefix[], |
| 96 | +unsigned long long int suffix[], |
| 97 | +unsigned long long int power[]) |
| 98 | +{ |
| 99 | +for (int i = 0; i <= m - 1; i++) { |
| 100 | +int L = q[i].L; |
| 101 | +int R = q[i].R; |
| 102 | + |
| 103 | +// Hash Value of Substring [L, R] |
| 104 | +unsigned long long hash_LR |
| 105 | += ((prefix[R + 1] - prefix[L] + MOD) % MOD |
| 106 | +* findMMI(power[L]) % MOD) |
| 107 | +% MOD; |
| 108 | + |
| 109 | +// Reverse Hash Value of Substring [L, R] |
| 110 | +unsigned long long reverse_hash_LR |
| 111 | += ((suffix[n - L] - suffix[n - R - 1] + MOD) % MOD |
| 112 | +* findMMI(power[n - R - 1]) % MOD) |
| 113 | +% MOD; |
| 114 | + |
| 115 | +// If both are equal then |
| 116 | +// the substring is a palindrome |
| 117 | +if (hash_LR == reverse_hash_LR) { |
| 118 | +if (isPalindrome(str, L, R) == true) |
| 119 | +printf("The Substring [%d %d] is a " |
| 120 | +"palindrome\n", |
| 121 | +L, R); |
| 122 | +else |
| 123 | +printf("The Substring [%d %d] is not a " |
| 124 | +"palindrome\n", |
| 125 | +L, R); |
| 126 | +} |
| 127 | + |
| 128 | +else |
| 129 | +printf("The Substring [%d %d] is not a " |
| 130 | +"palindrome\n", |
| 131 | +L, R); |
| 132 | +} |
| 133 | + |
| 134 | +return; |
| 135 | +} |
| 136 | + |
| 137 | +// A Dynamic Programming Based Approach to compute the |
| 138 | +// powers of 101 |
| 139 | +void computePowers(unsigned long long int power[], int n) |
| 140 | +{ |
| 141 | +// 101^0 = 1 |
| 142 | +power[0] = 1; |
| 143 | + |
| 144 | +for (int i = 1; i <= n; i++) |
| 145 | +power[i] = (power[i - 1] % MOD * p % MOD) % MOD; |
| 146 | + |
| 147 | +return; |
| 148 | +} |
| 149 | + |
| 150 | +/* Driver program to test above function */ |
| 151 | +int main() |
| 152 | +{ |
| 153 | +string str = "abaaabaaaba"; |
| 154 | +int n = str.length(); |
| 155 | + |
| 156 | +// A Table to store the powers of 101 |
| 157 | +unsigned long long int power[n + 1]; |
| 158 | + |
| 159 | +computePowers(power, n); |
| 160 | + |
| 161 | +// Arrays to hold prefix and suffix hash values |
| 162 | +unsigned long long int prefix[n + 1], suffix[n + 1]; |
| 163 | + |
| 164 | +// Compute Prefix Hash and Suffix Hash Arrays |
| 165 | +computePrefixHash(str, n, prefix, power); |
| 166 | +computeSuffixHash(str, n, suffix, power); |
| 167 | + |
| 168 | +Query q[] = { { 0, 10 }, { 5, 8 }, { 2, 5 }, { 5, 9 } }; |
| 169 | +int m = sizeof(q) / sizeof(q[0]); |
| 170 | + |
| 171 | +queryResults(str, q, m, n, prefix, suffix, power); |
| 172 | +return (0); |
| 173 | +} |
0 commit comments