|
303 | 303 | * [TF-Agents](https://github.com/tensorflow/agents) - A library for Reinforcement Learning in TensorFlow. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
304 | 304 | * [TensorForce](https://github.com/reinforceio/tensorforce) - A TensorFlow library for applied reinforcement learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
305 | 305 | * [TRFL](https://github.com/deepmind/trfl) - TensorFlow Reinforcement Learning. <img height="20" src="img/tf_big2.png" alt="sklearn">
|
306 |
| -* [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms. |
| 306 | +* [Dopamine](https://github.com/google/dopamine) - A research framework for fast prototyping of reinforcement learning algorithms. |
307 | 307 | * [keras-rl](https://github.com/keras-rl/keras-rl) - Deep Reinforcement Learning for Keras. <img height="20" src="img/keras_big.png" alt="Keras compatible">
|
308 | 308 | * [ChainerRL](https://github.com/chainer/chainerrl) - A deep reinforcement learning library built on top of Chainer.
|
309 | 309 |
|
|
412 | 412 | * [Pandas Profiling](https://github.com/pandas-profiling/pandas-profiling) - Create HTML profiling reports from pandas DataFrame objects. <img height="20" src="img/pandas_big.png" alt="pandas compatible">
|
413 | 413 | * [statsmodels](https://github.com/statsmodels/statsmodels) - Statistical modeling and econometrics in Python.
|
414 | 414 | * [stockstats](https://github.com/jealous/stockstats) - Supply a wrapper ``StockDataFrame`` based on the ``pandas.DataFrame`` with inline stock statistics/indicators support.
|
415 |
| -* [weightedcalcs](https://github.com/jsvine/weightedcalcs) - pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more. |
| 415 | +* [weightedcalcs](https://github.com/jsvine/weightedcalcs) - A pandas-based utility to calculate weighted means, medians, distributions, standard deviations, and more. |
416 | 416 | * [scikit-posthocs](https://github.com/maximtrp/scikit-posthocs) - Pairwise Multiple Comparisons Post-hoc Tests.
|
417 | 417 | * [Alphalens](https://github.com/quantopian/alphalens) - Performance analysis of predictive (alpha) stock factors.
|
418 | 418 |
|
|
423 | 423 | * [Veles](https://github.com/Samsung/veles) - Distributed machine learning platform.
|
424 | 424 | * [Jubatus](https://github.com/jubatus/jubatus) - Framework and Library for Distributed Online Machine Learning.
|
425 | 425 | * [DMTK](https://github.com/Microsoft/DMTK) - Microsoft Distributed Machine Learning Toolkit.
|
426 |
| -* [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) - PArallel Distributed Deep LEarning |
| 426 | +* [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) - PArallel Distributed Deep LEarning. |
427 | 427 | * [dask-ml](https://github.com/dask/dask-ml) - Distributed and parallel machine learning. <img height="20" src="img/sklearn_big.png" alt="sklearn">
|
428 | 428 | * [Distributed](https://github.com/dask/distributed) - Distributed computation in Python.
|
429 | 429 |
|
|
438 | 438 | ## Evaluation
|
439 | 439 | * [recmetrics](https://github.com/statisticianinstilettos/recmetrics) - Library of useful metrics and plots for evaluating recommender systems.
|
440 | 440 | * [Metrics](https://github.com/benhamner/Metrics) - Machine learning evaluation metric.
|
441 |
| -* [sklearn-evaluation](https://github.com/edublancas/sklearn-evaluation) - scikit-learn model evaluation made easy: plots, tables and markdown reports. |
| 441 | +* [sklearn-evaluation](https://github.com/edublancas/sklearn-evaluation) - Model evaluation made easy: plots, tables and markdown reports. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
442 | 442 | * [AI Fairness 360](https://github.com/IBM/AIF360) - Fairness metrics for datasets and ML models, explanations and algorithms to mitigate bias in datasets and models.
|
443 | 443 |
|
444 | 444 | <a name="compt"></a>
|
|
0 commit comments