|
24 | 24 | * [Visualization](#vis)
|
25 | 25 | * [Model Explanation](#expl)
|
26 | 26 | * [Reinforcement Learning](#rl)
|
27 |
| -* [Distributed Computing](#dist) |
28 | 27 | * [Probabilistic Methods](#bayes)
|
29 | 28 | * [Genetic Programming](#gp)
|
30 | 29 | * [Optimization](#opt)
|
31 | 30 | * [Natural Language Processing](#nlp)
|
32 | 31 | * [Computer Audition](#ca)
|
33 | 32 | * [Computer Vision](#cv)
|
34 | 33 | * [Statistics](#stat)
|
| 34 | +* [Distributed Computing](#dist) |
35 | 35 | * [Experimentation](#tools)
|
36 | 36 | * [Evaluation](#eval)
|
37 | 37 | * [Computations](#compt)
|
|
299 | 299 | ## Reinforcement Learning
|
300 | 300 | * [OpenAI Gym](https://github.com/openai/gym) - A toolkit for developing and comparing reinforcement learning algorithms.
|
301 | 301 |
|
302 |
| -<a name="dist"></a> |
303 |
| -## Distributed Computing |
304 |
| -* [Horovod](https://github.com/uber/horovod) - Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
305 |
| -* [PySpark](https://spark.apache.org/docs/0.9.0/python-programming-guide.html) - Exposes the Spark programming model to Python. <img height="20" src="img/spark_big.png" alt="Apache Spark based"> |
306 |
| -* [Veles](https://github.com/Samsung/veles) - Distributed machine learning platform. |
307 |
| -* [Jubatus](https://github.com/jubatus/jubatus) - Framework and Library for Distributed Online Machine Learning. |
308 |
| -* [DMTK](https://github.com/Microsoft/DMTK) - Microsoft Distributed Machine Learning Toolkit. |
309 |
| -* [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) - PArallel Distributed Deep LEarning |
310 |
| -* [dask-ml](https://github.com/dask/dask-ml) - Distributed and parallel machine learning. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
311 |
| -* [Distributed](https://github.com/dask/distributed) - Distributed computation in Python. |
312 |
| - |
313 | 302 | <a name="bayes"></a>
|
314 | 303 | ## Probabilistic Methods
|
315 | 304 | * [pomegranate](https://github.com/jmschrei/pomegranate) - Probabilistic and graphical models for Python. <img height="20" src="img/gpu_big.png" alt="GPU accelerated">
|
|
408 | 397 | * [scikit-posthocs](https://github.com/maximtrp/scikit-posthocs) - Pairwise Multiple Comparisons Post-hoc Tests.
|
409 | 398 | * [Alphalens](https://github.com/quantopian/alphalens) - Performance analysis of predictive (alpha) stock factors.
|
410 | 399 |
|
| 400 | +<a name="dist"></a> |
| 401 | +## Distributed Computing |
| 402 | +* [Horovod](https://github.com/uber/horovod) - Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. <img height="20" src="img/tf_big2.png" alt="sklearn"> |
| 403 | +* [PySpark](https://spark.apache.org/docs/0.9.0/python-programming-guide.html) - Exposes the Spark programming model to Python. <img height="20" src="img/spark_big.png" alt="Apache Spark based"> |
| 404 | +* [Veles](https://github.com/Samsung/veles) - Distributed machine learning platform. |
| 405 | +* [Jubatus](https://github.com/jubatus/jubatus) - Framework and Library for Distributed Online Machine Learning. |
| 406 | +* [DMTK](https://github.com/Microsoft/DMTK) - Microsoft Distributed Machine Learning Toolkit. |
| 407 | +* [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) - PArallel Distributed Deep LEarning |
| 408 | +* [dask-ml](https://github.com/dask/dask-ml) - Distributed and parallel machine learning. <img height="20" src="img/sklearn_big.png" alt="sklearn"> |
| 409 | +* [Distributed](https://github.com/dask/distributed) - Distributed computation in Python. |
| 410 | + |
411 | 411 | <a name="tools"></a>
|
412 | 412 | ## Experimentation
|
413 | 413 | * [Sacred](https://github.com/IDSIA/sacred) - A tool to help you configure, organize, log and reproduce experiments.
|
|
0 commit comments