|
| 1 | +// Package ens160 provides a driver for the ScioSense ENS160 digital gas sensor. |
| 2 | +// |
| 3 | +// Datasheet: https://www.sciosense.com/wp-content/uploads/2023/12/ENS160-Datasheet.pdf |
| 4 | +package ens160 |
| 5 | + |
| 6 | +import ( |
| 7 | +"encoding/binary" |
| 8 | +"errors" |
| 9 | +"time" |
| 10 | + |
| 11 | +"tinygo.org/x/drivers" |
| 12 | +) |
| 13 | + |
| 14 | +const ( |
| 15 | +defaultTimeout = 30 * time.Millisecond |
| 16 | +shortTimeout = 1 * time.Millisecond |
| 17 | +) |
| 18 | + |
| 19 | +// Conversion constants for environment data compensation. |
| 20 | +const ( |
| 21 | +kelvinOffsetMilli = 273150 // 273.15 K in milli-units |
| 22 | +tempRawFactor = 64 // As per datasheet for TEMP_IN |
| 23 | +humRawFactor = 512 // As per datasheet for RH_IN |
| 24 | +milliFactor = 1000 // For converting from milli-units |
| 25 | +roundingTerm = milliFactor / 2 // For rounding before integer division |
| 26 | +) |
| 27 | + |
| 28 | +// validityStrings provides human-readable descriptions for validity flags. |
| 29 | +var validityStrings = [...]string{ |
| 30 | +ValidityNormalOperation: "normal operation", |
| 31 | +ValidityWarmUpPhase: "warm-up phase, wait ~3 minutes for valid data", |
| 32 | +ValidityInitialStartUpPhase: "initial start-up phase, wait ~1 hour for valid data", |
| 33 | +ValidityInvalidOutput: "invalid output", |
| 34 | +} |
| 35 | + |
| 36 | +// Device wraps an I2C connection to an ENS160 device. |
| 37 | +type Device struct { |
| 38 | +bus drivers.I2C // I²C implementation |
| 39 | +addr uint16 // 7‑bit bus address, promoted to uint16 per drivers.I2C |
| 40 | + |
| 41 | +// shadow registers / last measurements |
| 42 | +lastTvocPPB uint16 |
| 43 | +lastEco2PPM uint16 |
| 44 | +lastAqiUBA uint8 |
| 45 | +lastValidity uint8 // Store the latest validity status |
| 46 | + |
| 47 | +// pre‑allocated buffers |
| 48 | +wbuf [5]byte // longest write: reg + 4 bytes (TEMP+RH) |
| 49 | +rbuf [5]byte // longest read: DATA burst (5 bytes) |
| 50 | +} |
| 51 | + |
| 52 | +// New returns a new ENS160 driver. |
| 53 | +func New(bus drivers.I2C, addr uint16) *Device { |
| 54 | +if addr == 0 { |
| 55 | +addr = DefaultAddress |
| 56 | +} |
| 57 | +return &Device{ |
| 58 | +bus: bus, |
| 59 | +addr: addr, |
| 60 | +lastValidity: ValidityInvalidOutput, |
| 61 | +} |
| 62 | +} |
| 63 | + |
| 64 | +// Connected returns whether a ENS160 has been found. |
| 65 | +func (d *Device) Connected() bool { |
| 66 | +d.wbuf[0] = regPartID |
| 67 | +err := d.bus.Tx(d.addr, d.wbuf[:1], d.rbuf[:2]) |
| 68 | +return err == nil && d.rbuf[0] == LowPartID && d.rbuf[1] == HighPartID |
| 69 | +} |
| 70 | + |
| 71 | +// Configure sets up the device for reading. |
| 72 | +func (d *Device) Configure() error { |
| 73 | +// 1. Soft-reset. The device will automatically enter IDLE mode. |
| 74 | +if err := d.write1(regOpMode, ModeReset); err != nil { |
| 75 | +return err |
| 76 | +} |
| 77 | +time.Sleep(defaultTimeout) |
| 78 | + |
| 79 | +// 2. Clear GPR registers, then go to STANDARD mode. |
| 80 | +if err := d.write1(regCommand, cmdClrGPR); err != nil { |
| 81 | +return err |
| 82 | +} |
| 83 | +time.Sleep(defaultTimeout) |
| 84 | + |
| 85 | +if err := d.write1(regOpMode, ModeStandard); err != nil { |
| 86 | +return err |
| 87 | +} |
| 88 | +time.Sleep(defaultTimeout) |
| 89 | + |
| 90 | +return nil |
| 91 | +} |
| 92 | + |
| 93 | +// calculateTempRaw converts temperature from milli-degrees Celsius to the sensor's raw format. |
| 94 | +func calculateTempRaw(tempMilliC int32) uint16 { |
| 95 | +// Clip temperature |
| 96 | +const ( |
| 97 | +minC = -40 * 1000 |
| 98 | +maxC = 85 * 1000 |
| 99 | +) |
| 100 | +if tempMilliC < minC { |
| 101 | +tempMilliC = minC |
| 102 | +} else if tempMilliC > maxC { |
| 103 | +tempMilliC = maxC |
| 104 | +} |
| 105 | + |
| 106 | +// Integer fixed-point conversion to format required by the sensor. |
| 107 | +// Formula from datasheet: T_IN = (T_ambient_C + 273.15) * 64 |
| 108 | +return uint16((((tempMilliC + kelvinOffsetMilli) * tempRawFactor) + roundingTerm) / milliFactor) |
| 109 | +} |
| 110 | + |
| 111 | +// calculateHumRaw converts relative humidity from milli-percent to the sensor's raw format. |
| 112 | +func calculateHumRaw(rhMilliPct int32) uint16 { |
| 113 | +// Clip humidity |
| 114 | +if rhMilliPct < 0 { |
| 115 | +rhMilliPct = 0 |
| 116 | +} else if rhMilliPct > 100*1000 { |
| 117 | +rhMilliPct = 100 * 1000 |
| 118 | +} |
| 119 | + |
| 120 | +// Integer fixed-point conversion to format required by the sensor. |
| 121 | +// Formula from datasheet: RH_IN = (RH_ambient_% * 512) |
| 122 | +return uint16(((rhMilliPct * humRawFactor) + roundingTerm) / milliFactor) |
| 123 | +} |
| 124 | + |
| 125 | +// SetEnvDataMilli sets the ambient temperature and humidity for compensation. |
| 126 | +// |
| 127 | +// tempMilliC is the temperature in milli-degrees Celsius. |
| 128 | +// rhMilliPct is the relative humidity in milli-percent. |
| 129 | +func (d *Device) SetEnvDataMilli(tempMilliC, rhMilliPct int32) error { |
| 130 | +tempRaw := calculateTempRaw(tempMilliC) |
| 131 | +humRaw := calculateHumRaw(rhMilliPct) |
| 132 | + |
| 133 | +d.wbuf[0] = regTempIn // start address (auto‑increment) |
| 134 | +binary.LittleEndian.PutUint16(d.wbuf[1:3], tempRaw) |
| 135 | +binary.LittleEndian.PutUint16(d.wbuf[3:5], humRaw) |
| 136 | + |
| 137 | +return d.bus.Tx(d.addr, d.wbuf[:5], nil) |
| 138 | +} |
| 139 | + |
| 140 | +// Update refreshes the concentration measurements. |
| 141 | +func (d *Device) Update(which drivers.Measurement) error { |
| 142 | +if which&drivers.Concentration == 0 { |
| 143 | +return nil // nothing requested |
| 144 | +} |
| 145 | + |
| 146 | +const maxTries = 1000 |
| 147 | +var ( |
| 148 | +status uint8 |
| 149 | +validity uint8 |
| 150 | +) |
| 151 | +var gotData bool |
| 152 | + |
| 153 | +// Poll DEVICE_STATUS until NEWDAT or timeout |
| 154 | +for range maxTries { |
| 155 | +var err error |
| 156 | +status, err = d.read1(regStatus) |
| 157 | +if err != nil { |
| 158 | +return err |
| 159 | +} |
| 160 | +if status&statusSTATER != 0 { |
| 161 | +return errors.New("ENS160: error (STATER set)") |
| 162 | +} |
| 163 | +validity = (status & statusValidityMask) >> statusValidityShift |
| 164 | + |
| 165 | +if status&statusNEWDAT != 0 { |
| 166 | +gotData = true |
| 167 | +break // Always break when data available |
| 168 | +} |
| 169 | +time.Sleep(shortTimeout) |
| 170 | +} |
| 171 | +if !gotData { |
| 172 | +return errors.New("ENS160: timeout waiting for NEWDAT") |
| 173 | +} |
| 174 | + |
| 175 | +// Burst-read data regardless of validity state |
| 176 | +d.wbuf[0] = regAQI |
| 177 | +if err := d.bus.Tx(d.addr, d.wbuf[:1], d.rbuf[:5]); err != nil { |
| 178 | +return errors.New("ENS160: burst read failed") |
| 179 | +} |
| 180 | + |
| 181 | +d.lastAqiUBA = d.rbuf[0] |
| 182 | +d.lastTvocPPB = binary.LittleEndian.Uint16(d.rbuf[1:3]) |
| 183 | +d.lastEco2PPM = binary.LittleEndian.Uint16(d.rbuf[3:5]) |
| 184 | +d.lastValidity = validity // Store the validity status |
| 185 | + |
| 186 | +return nil |
| 187 | +} |
| 188 | + |
| 189 | +// TVOC returns the last total‑VOC concentration in parts‑per‑billion. |
| 190 | +func (d *Device) TVOC() uint16 { return d.lastTvocPPB } |
| 191 | + |
| 192 | +// ECO2 returns the last equivalent CO₂ concentration in parts‑per‑million. |
| 193 | +func (d *Device) ECO2() uint16 { return d.lastEco2PPM } |
| 194 | + |
| 195 | +// AQI returns the last Air‑Quality Index according to UBA (1–5). |
| 196 | +func (d *Device) AQI() uint8 { return d.lastAqiUBA } |
| 197 | + |
| 198 | +// Validity returns the current operating state of the sensor. |
| 199 | +func (d *Device) Validity() uint8 { |
| 200 | +return d.lastValidity |
| 201 | +} |
| 202 | + |
| 203 | +// ValidityString returns a human-readable string describing the current validity status. |
| 204 | +func (d *Device) ValidityString() string { |
| 205 | +if int(d.lastValidity) < len(validityStrings) { |
| 206 | +return validityStrings[d.lastValidity] |
| 207 | +} |
| 208 | +return "unknown" |
| 209 | +} |
| 210 | + |
| 211 | +// write1 writes a single byte to a register. |
| 212 | +func (d *Device) write1(reg, val uint8) error { |
| 213 | +d.wbuf[0] = reg |
| 214 | +d.wbuf[1] = val |
| 215 | +return d.bus.Tx(d.addr, d.wbuf[:2], nil) |
| 216 | +} |
| 217 | + |
| 218 | +// read1 reads a single byte from a register. |
| 219 | +func (d *Device) read1(reg uint8) (uint8, error) { |
| 220 | +d.wbuf[0] = reg |
| 221 | +if err := d.bus.Tx(d.addr, d.wbuf[:1], d.rbuf[:1]); err != nil { |
| 222 | +return 0, err |
| 223 | +} |
| 224 | +return d.rbuf[0], nil |
| 225 | +} |
0 commit comments