Skip to content

Commit 32fe556

Browse files
authored
Fix CI and license badge. (#356)
* feat: enable pifpaf inference support * refact: rm comments * feat: openpifpaf decoder finalized * fix: ci * fix: license badge * fix: gcc7 compilation
1 parent ae1c11e commit 32fe556

File tree

2 files changed

+10
-4
lines changed

2 files changed

+10
-4
lines changed

README.md

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010
<a href="https://drive.google.com/drive/folders/1w9EjMkrjxOmMw3Rf6fXXkiv_ge7M99jR?usp=sharing" title="PreTrainedModels"><img src="https://img.shields.io/badge/trained%20models-GoogleDrive-brightgreen.svg"></a>
1111
<a href="https://en.cppreference.com/w/cpp/17" title="CppStandard"><img src="https://img.shields.io/badge/C++-17-blue.svg?style=flat&logo=c%2B%2B"></a>
1212
<a href="https://github.com/tensorlayer/hyperpose/graphs/commit-activity" title="Maintenance"><img src="https://img.shields.io/badge/maintained%3F-YES-brightgreen.svg"></a>
13-
<a href="https://github.com/tensorlayer/tensorlayer/blob/master/LICENSE.rst" title="TensorLayer"><img src="https://img.shields.io/github/license/tensorlayer/tensorlayer">
13+
<a href="https://github.com/tensorlayer/tensorlayer/blob/master/LICENSE.rst" title="TensorLayer"><img src="https://img.shields.io/badge/License-Apache%202.0-blue.svg">
1414
</p>
1515

1616
---
@@ -85,6 +85,8 @@ We compare the prediction performance of HyperPose with [OpenPose 1.6](https://g
8585
| OpenPose (MobileNet) | 17.9 MB | 432 x 368 | **84.32 FPS** | 8.5 FPS (TF-Pose) |
8686
| OpenPose (ResNet18) | 45.0 MB | 432 x 368 | **62.52 FPS** | N/A |
8787
| OpenPifPaf (ResNet50) | 97.6 MB | 97 x 129 | **178.6 FPS** | 35.3 |
88+
<<<<<<< HEAD
89+
=======
8890

8991
## Accuracy
9092
We evaluate accuracy of pose estimation models developed by hyperpose (mainly over Mscoco2017 dataset). the development environment is Ubuntu16.04, with 4 V100-DGXs and 24 Intel Xeon CPU. The training procedure takes 1~2 weeks using 1 V100-DGX for each model. (If you want to train from strach, loading the pretrained backbone weight is recommended.)
@@ -97,6 +99,7 @@ We evaluate accuracy of pose estimation models developed by hyperpose (mainly ov
9799
| LightweightOpenpose (tinyvgg) | 23.6 MB | 432 x 368 | Mscoco2017(all 5000 images) | 47.3 map | - |
98100
| LightweightOpenpose (resnet50) | 42.7 MB | 432 x 368 | Mscoco2017(all 5000 images) | 48.2 map | - |
99101
| PoseProposal (resnet18) | 45.2 MB | 384 x 384 | MPII(all 2729 images) | 54.9 map (Pckh) | 72.8 map (Pckh)|
102+
>>>>>>> master
100103
101104
</a>
102105
<p align="center">

src/pifpaf_decoder/openpifpaf_postprocessor.cpp

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -439,9 +439,8 @@ namespace aiapp_impl {
439439
using xysv = std::optional<std::tuple<float, float, float, float>>;
440440

441441
struct queue_item { // -score, xyv, start_i, end_i
442-
template <typename... Args>
443-
queue_item(Args&&... args)
444-
: data(std::make_tuple(std::forward<Args>(args)...))
442+
explicit queue_item(float f, xysv xysv_, int s, int e)
443+
: data(std::make_tuple(f, std::move(xysv_), s, e))
445444
{
446445
}
447446
std::tuple<float, xysv, int, int> data;
@@ -462,7 +461,11 @@ namespace aiapp_impl {
462461
// frontierActive = true;
463462
// blockFrontier.clear();
464463
std::set<std::pair<int, int>> in_frontier{};
464+
<<<<<<< HEAD
465+
std::priority_queue<queue_item, std::deque<queue_item>, std::greater<>> frontier;
466+
=======
465467
std::priority_queue<queue_item, std::deque<queue_item>, std::greater<queue_item>> frontier;
468+
>>>>>>> master
466469

467470
const auto add_to_frontier = [&](size_t start_i) {
468471
for (const auto& [end_i, to_p] : BY_SOURCE_MAP[start_i]) {

0 commit comments

Comments
 (0)