Skip to content

Commit 778cd60

Browse files
authored
Add files via upload
1 parent 125709f commit 778cd60

File tree

9 files changed

+1996
-0
lines changed

9 files changed

+1996
-0
lines changed

Decision Tree/Untitled.ipynb

Lines changed: 512 additions & 0 deletions
Large diffs are not rendered by default.

Decision Tree/utf-8''iris(1).csv

Lines changed: 151 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,151 @@
1+
sepal_length,sepal_width,petal_length,petal_width,species
2+
5.1,3.5,1.4,0.2,setosa
3+
4.9,3.0,1.4,0.2,setosa
4+
4.7,3.2,1.3,0.2,setosa
5+
4.6,3.1,1.5,0.2,setosa
6+
5.0,3.6,1.4,0.2,setosa
7+
5.4,3.9,1.7,0.4,setosa
8+
4.6,3.4,1.4,0.3,setosa
9+
5.0,3.4,1.5,0.2,setosa
10+
4.4,2.9,1.4,0.2,setosa
11+
4.9,3.1,1.5,0.1,setosa
12+
5.4,3.7,1.5,0.2,setosa
13+
4.8,3.4,1.6,0.2,setosa
14+
4.8,3.0,1.4,0.1,setosa
15+
4.3,3.0,1.1,0.1,setosa
16+
5.8,4.0,1.2,0.2,setosa
17+
5.7,4.4,1.5,0.4,setosa
18+
5.4,3.9,1.3,0.4,setosa
19+
5.1,3.5,1.4,0.3,setosa
20+
5.7,3.8,1.7,0.3,setosa
21+
5.1,3.8,1.5,0.3,setosa
22+
5.4,3.4,1.7,0.2,setosa
23+
5.1,3.7,1.5,0.4,setosa
24+
4.6,3.6,1.0,0.2,setosa
25+
5.1,3.3,1.7,0.5,setosa
26+
4.8,3.4,1.9,0.2,setosa
27+
5.0,3.0,1.6,0.2,setosa
28+
5.0,3.4,1.6,0.4,setosa
29+
5.2,3.5,1.5,0.2,setosa
30+
5.2,3.4,1.4,0.2,setosa
31+
4.7,3.2,1.6,0.2,setosa
32+
4.8,3.1,1.6,0.2,setosa
33+
5.4,3.4,1.5,0.4,setosa
34+
5.2,4.1,1.5,0.1,setosa
35+
5.5,4.2,1.4,0.2,setosa
36+
4.9,3.1,1.5,0.2,setosa
37+
5.0,3.2,1.2,0.2,setosa
38+
5.5,3.5,1.3,0.2,setosa
39+
4.9,3.6,1.4,0.1,setosa
40+
4.4,3.0,1.3,0.2,setosa
41+
5.1,3.4,1.5,0.2,setosa
42+
5.0,3.5,1.3,0.3,setosa
43+
4.5,2.3,1.3,0.3,setosa
44+
4.4,3.2,1.3,0.2,setosa
45+
5.0,3.5,1.6,0.6,setosa
46+
5.1,3.8,1.9,0.4,setosa
47+
4.8,3.0,1.4,0.3,setosa
48+
5.1,3.8,1.6,0.2,setosa
49+
4.6,3.2,1.4,0.2,setosa
50+
5.3,3.7,1.5,0.2,setosa
51+
5.0,3.3,1.4,0.2,setosa
52+
7.0,3.2,4.7,1.4,versicolor
53+
6.4,3.2,4.5,1.5,versicolor
54+
6.9,3.1,4.9,1.5,versicolor
55+
5.5,2.3,4.0,1.3,versicolor
56+
6.5,2.8,4.6,1.5,versicolor
57+
5.7,2.8,4.5,1.3,versicolor
58+
6.3,3.3,4.7,1.6,versicolor
59+
4.9,2.4,3.3,1.0,versicolor
60+
6.6,2.9,4.6,1.3,versicolor
61+
5.2,2.7,3.9,1.4,versicolor
62+
5.0,2.0,3.5,1.0,versicolor
63+
5.9,3.0,4.2,1.5,versicolor
64+
6.0,2.2,4.0,1.0,versicolor
65+
6.1,2.9,4.7,1.4,versicolor
66+
5.6,2.9,3.6,1.3,versicolor
67+
6.7,3.1,4.4,1.4,versicolor
68+
5.6,3.0,4.5,1.5,versicolor
69+
5.8,2.7,4.1,1.0,versicolor
70+
6.2,2.2,4.5,1.5,versicolor
71+
5.6,2.5,3.9,1.1,versicolor
72+
5.9,3.2,4.8,1.8,versicolor
73+
6.1,2.8,4.0,1.3,versicolor
74+
6.3,2.5,4.9,1.5,versicolor
75+
6.1,2.8,4.7,1.2,versicolor
76+
6.4,2.9,4.3,1.3,versicolor
77+
6.6,3.0,4.4,1.4,versicolor
78+
6.8,2.8,4.8,1.4,versicolor
79+
6.7,3.0,5.0,1.7,versicolor
80+
6.0,2.9,4.5,1.5,versicolor
81+
5.7,2.6,3.5,1.0,versicolor
82+
5.5,2.4,3.8,1.1,versicolor
83+
5.5,2.4,3.7,1.0,versicolor
84+
5.8,2.7,3.9,1.2,versicolor
85+
6.0,2.7,5.1,1.6,versicolor
86+
5.4,3.0,4.5,1.5,versicolor
87+
6.0,3.4,4.5,1.6,versicolor
88+
6.7,3.1,4.7,1.5,versicolor
89+
6.3,2.3,4.4,1.3,versicolor
90+
5.6,3.0,4.1,1.3,versicolor
91+
5.5,2.5,4.0,1.3,versicolor
92+
5.5,2.6,4.4,1.2,versicolor
93+
6.1,3.0,4.6,1.4,versicolor
94+
5.8,2.6,4.0,1.2,versicolor
95+
5.0,2.3,3.3,1.0,versicolor
96+
5.6,2.7,4.2,1.3,versicolor
97+
5.7,3.0,4.2,1.2,versicolor
98+
5.7,2.9,4.2,1.3,versicolor
99+
6.2,2.9,4.3,1.3,versicolor
100+
5.1,2.5,3.0,1.1,versicolor
101+
5.7,2.8,4.1,1.3,versicolor
102+
6.3,3.3,6.0,2.5,virginica
103+
5.8,2.7,5.1,1.9,virginica
104+
7.1,3.0,5.9,2.1,virginica
105+
6.3,2.9,5.6,1.8,virginica
106+
6.5,3.0,5.8,2.2,virginica
107+
7.6,3.0,6.6,2.1,virginica
108+
4.9,2.5,4.5,1.7,virginica
109+
7.3,2.9,6.3,1.8,virginica
110+
6.7,2.5,5.8,1.8,virginica
111+
7.2,3.6,6.1,2.5,virginica
112+
6.5,3.2,5.1,2.0,virginica
113+
6.4,2.7,5.3,1.9,virginica
114+
6.8,3.0,5.5,2.1,virginica
115+
5.7,2.5,5.0,2.0,virginica
116+
5.8,2.8,5.1,2.4,virginica
117+
6.4,3.2,5.3,2.3,virginica
118+
6.5,3.0,5.5,1.8,virginica
119+
7.7,3.8,6.7,2.2,virginica
120+
7.7,2.6,6.9,2.3,virginica
121+
6.0,2.2,5.0,1.5,virginica
122+
6.9,3.2,5.7,2.3,virginica
123+
5.6,2.8,4.9,2.0,virginica
124+
7.7,2.8,6.7,2.0,virginica
125+
6.3,2.7,4.9,1.8,virginica
126+
6.7,3.3,5.7,2.1,virginica
127+
7.2,3.2,6.0,1.8,virginica
128+
6.2,2.8,4.8,1.8,virginica
129+
6.1,3.0,4.9,1.8,virginica
130+
6.4,2.8,5.6,2.1,virginica
131+
7.2,3.0,5.8,1.6,virginica
132+
7.4,2.8,6.1,1.9,virginica
133+
7.9,3.8,6.4,2.0,virginica
134+
6.4,2.8,5.6,2.2,virginica
135+
6.3,2.8,5.1,1.5,virginica
136+
6.1,2.6,5.6,1.4,virginica
137+
7.7,3.0,6.1,2.3,virginica
138+
6.3,3.4,5.6,2.4,virginica
139+
6.4,3.1,5.5,1.8,virginica
140+
6.0,3.0,4.8,1.8,virginica
141+
6.9,3.1,5.4,2.1,virginica
142+
6.7,3.1,5.6,2.4,virginica
143+
6.9,3.1,5.1,2.3,virginica
144+
5.8,2.7,5.1,1.9,virginica
145+
6.8,3.2,5.9,2.3,virginica
146+
6.7,3.3,5.7,2.5,virginica
147+
6.7,3.0,5.2,2.3,virginica
148+
6.3,2.5,5.0,1.9,virginica
149+
6.5,3.0,5.2,2.0,virginica
150+
6.2,3.4,5.4,2.3,virginica
151+
5.9,3.0,5.1,1.8,virginica
Lines changed: 213 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,213 @@
1+
{
2+
"cells": [
3+
{
4+
"cell_type": "markdown",
5+
"metadata": {},
6+
"source": [
7+
"Linear Resgression Multiple variables"
8+
]
9+
},
10+
{
11+
"cell_type": "markdown",
12+
"metadata": {},
13+
"source": [
14+
"Import the Libraries"
15+
]
16+
},
17+
{
18+
"cell_type": "code",
19+
"execution_count": 17,
20+
"metadata": {},
21+
"outputs": [],
22+
"source": [
23+
"import numpy as np\n",
24+
"import pandas as pd\n",
25+
"import matplotlib.pyplot as plt\n",
26+
"import seaborn as sb"
27+
]
28+
},
29+
{
30+
"cell_type": "markdown",
31+
"metadata": {},
32+
"source": [
33+
"Load the Dataset"
34+
]
35+
},
36+
{
37+
"cell_type": "code",
38+
"execution_count": 18,
39+
"metadata": {},
40+
"outputs": [],
41+
"source": [
42+
"dataset=pd.read_csv('ex1data2.txt')\n",
43+
"X=dataset.iloc[:,:-1].values\n",
44+
"y=dataset.iloc[:,-1].values"
45+
]
46+
},
47+
{
48+
"cell_type": "code",
49+
"execution_count": 19,
50+
"metadata": {},
51+
"outputs": [
52+
{
53+
"name": "stdout",
54+
"output_type": "stream",
55+
"text": [
56+
"[[1600 3]\n",
57+
" [2400 3]\n",
58+
" [1416 2]\n",
59+
" [3000 4]\n",
60+
" [1985 4]\n",
61+
" [1534 3]\n",
62+
" [1427 3]\n",
63+
" [1380 3]\n",
64+
" [1494 3]\n",
65+
" [1940 4]\n",
66+
" [2000 3]\n",
67+
" [1890 3]\n",
68+
" [4478 5]\n",
69+
" [1268 3]\n",
70+
" [2300 4]\n",
71+
" [1320 2]\n",
72+
" [1236 3]\n",
73+
" [2609 4]\n",
74+
" [3031 4]\n",
75+
" [1767 3]\n",
76+
" [1888 2]\n",
77+
" [1604 3]\n",
78+
" [1962 4]\n",
79+
" [3890 3]\n",
80+
" [1100 3]\n",
81+
" [1458 3]\n",
82+
" [2526 3]\n",
83+
" [2200 3]\n",
84+
" [2637 3]\n",
85+
" [1839 2]\n",
86+
" [1000 1]\n",
87+
" [2040 4]\n",
88+
" [3137 3]\n",
89+
" [1811 4]\n",
90+
" [1437 3]\n",
91+
" [1239 3]\n",
92+
" [2132 4]\n",
93+
" [4215 4]\n",
94+
" [2162 4]\n",
95+
" [1664 2]\n",
96+
" [2238 3]\n",
97+
" [2567 4]\n",
98+
" [1200 3]\n",
99+
" [ 852 2]\n",
100+
" [1852 4]\n",
101+
" [1203 3]]\n"
102+
]
103+
}
104+
],
105+
"source": [
106+
"print(X)"
107+
]
108+
},
109+
{
110+
"cell_type": "code",
111+
"execution_count": 20,
112+
"metadata": {},
113+
"outputs": [
114+
{
115+
"name": "stdout",
116+
"output_type": "stream",
117+
"text": [
118+
"[329900 369000 232000 539900 299900 314900 198999 212000 242500 239999\n",
119+
" 347000 329999 699900 259900 449900 299900 199900 499998 599000 252900\n",
120+
" 255000 242900 259900 573900 249900 464500 469000 475000 299900 349900\n",
121+
" 169900 314900 579900 285900 249900 229900 345000 549000 287000 368500\n",
122+
" 329900 314000 299000 179900 299900 239500]\n"
123+
]
124+
}
125+
],
126+
"source": [
127+
"print(y)"
128+
]
129+
},
130+
{
131+
"cell_type": "markdown",
132+
"metadata": {},
133+
"source": [
134+
"Splitting the Dataset"
135+
]
136+
},
137+
{
138+
"cell_type": "code",
139+
"execution_count": 21,
140+
"metadata": {},
141+
"outputs": [],
142+
"source": [
143+
"from sklearn.model_selection import train_test_split\n",
144+
"X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)"
145+
]
146+
},
147+
{
148+
"cell_type": "code",
149+
"execution_count": 22,
150+
"metadata": {},
151+
"outputs": [],
152+
"source": [
153+
"from sklearn.linear_model import LinearRegression\n",
154+
"model=LinearRegression(normalize=True)\n",
155+
"model.fit(X_train,y_train)\n",
156+
"result=model.predict(X_test)\n"
157+
]
158+
},
159+
{
160+
"cell_type": "markdown",
161+
"metadata": {},
162+
"source": []
163+
},
164+
{
165+
"cell_type": "code",
166+
"execution_count": 23,
167+
"metadata": {},
168+
"outputs": [
169+
{
170+
"name": "stdout",
171+
"output_type": "stream",
172+
"text": [
173+
"[266611.31683851 324085.31639041 438749.980843 327443.40737608\n",
174+
" 345745.46093557 335473.6249505 338350.81825691 329685.02578672\n",
175+
" 345505.01209594 511751.95879232 231965.49347897 353286.10757014\n",
176+
" 228942.29621667 276591.14491179]\n"
177+
]
178+
}
179+
],
180+
"source": [
181+
"print(result)"
182+
]
183+
},
184+
{
185+
"cell_type": "code",
186+
"execution_count": null,
187+
"metadata": {},
188+
"outputs": [],
189+
"source": []
190+
}
191+
],
192+
"metadata": {
193+
"kernelspec": {
194+
"display_name": "Python 3",
195+
"language": "python",
196+
"name": "python3"
197+
},
198+
"language_info": {
199+
"codemirror_mode": {
200+
"name": "ipython",
201+
"version": 3
202+
},
203+
"file_extension": ".py",
204+
"mimetype": "text/x-python",
205+
"name": "python",
206+
"nbconvert_exporter": "python",
207+
"pygments_lexer": "ipython3",
208+
"version": "3.7.1"
209+
}
210+
},
211+
"nbformat": 4,
212+
"nbformat_minor": 2
213+
}

0 commit comments

Comments
 (0)