|
4 | 4 | import os
|
5 | 5 | import joblib
|
6 | 6 | from utils import normalize_MPU9250_data, split_df, get_intervals_from_moments, EventIntervals
|
| 7 | +from GeneralAnalyser import GeneralAnalyser, plot_measurements |
7 | 8 |
|
8 |
| -# plt.interactive(True) |
| 9 | +plt.interactive(True) |
9 | 10 | pd.options.display.max_columns = 15
|
10 | 11 | pic_prefix = 'pic/'
|
11 | 12 |
|
12 | 13 | sessions_dict = joblib.load('data/sessions_dict')
|
13 |
| -gamedata_dict = joblib.load('data/gamedata_dict') |
| 14 | +gamedata_dict = joblib.load('data/gamedata_dict_old') |
| 15 | + |
| 16 | +# gamedata_dict.update(gamedata_dict_update) |
| 17 | + |
14 | 18 |
|
15 | 19 | sensors_columns_dict = {
|
16 | 20 | 'hrm': ['hrm'],
|
17 |
| - 'envibox': ['als', 'mic', 'humidity', 'temperature', 'co2'], |
18 |
| - 'datalog': ['hrm2', 'resistance', 'muscle_activity'] |
| 21 | + 'datalog': ['resistance', 'muscle_activity'], |
| 22 | + 'envibox': ['co2', 'temperature', 'humidity'], |
| 23 | + 'eyetracker': ['gaze_x', 'gaze_y'], |
| 24 | + 'mxy': ['mouse_dx', 'mouse_dy'], |
| 25 | + 'schairlog': ['acc_x', 'acc_y', 'acc_z', 'gyro_x', 'gyro_y', 'gyro_z'], |
19 | 26 | }
|
20 | 27 |
|
| 28 | +total_len = sum([len(value) for value in sensors_columns_dict.values()]) |
| 29 | + |
| 30 | + |
| 31 | + |
21 | 32 | sensors_list = list(sensors_columns_dict.keys())
|
22 | 33 | sensors_columns_list = []
|
23 | 34 |
|
|
30 | 41 | df_dict = {}
|
31 | 42 |
|
32 | 43 | if not set(sensors_list).issubset(set(session_data_dict.keys())):
|
| 44 | + print("not set(sensors_list).issubset(set(session_data_dict.keys()))") |
33 | 45 | ### If not all the sensors provided
|
34 |
| - # continue # TODO: THIS IS DANGEROUS AND SHOULD BE UNCOMMENTED BACK |
35 |
| - pass |
| 46 | + continue # TODO: THIS IS DANGEROUS AND SHOULD BE UNCOMMENTED BACK |
| 47 | + # pass |
36 | 48 |
|
37 | 49 | if session_id not in gamedata_dict:
|
38 | 50 | continue
|
|
41 | 53 | moments_death = gamedata_dict[session_id]['times_is_killed']
|
42 | 54 | duration = 1
|
43 | 55 |
|
44 |
| - intervals_shootout = gamedata_dict[session_id]['shootout_times_start_end'] |
| 56 | + # intervals_shootout = gamedata_dict[session_id]['shootout_times_start_end'] |
45 | 57 | intervals_kills = get_intervals_from_moments(moments_kills, interval_start=-duration, interval_end=duration)
|
46 | 58 | intervals_death = get_intervals_from_moments(moments_death, interval_start=-duration, interval_end=duration)
|
47 | 59 |
|
48 |
| - event_intervals_shootout = EventIntervals(intervals_list=intervals_shootout, label='shootouts', color='blue') |
49 |
| - event_intervals_kills = EventIntervals(intervals_list=intervals_kills, label='kills', color='green') |
| 60 | + # event_intervals_shootout = EventIntervals(intervals_list=intervals_shootout, label='shootouts', color='blue') |
| 61 | + event_intervals_kills = EventIntervals(intervals_list=intervals_kills, label='kills', color='limegreen') |
50 | 62 | event_intervals_death = EventIntervals(intervals_list=intervals_death, label='deaths', color='red')
|
51 | 63 |
|
52 |
| - events_intervals_list = [event_intervals_shootout, event_intervals_kills, event_intervals_death] |
53 |
| - |
| 64 | + # events_intervals_list = [event_intervals_shootout, event_intervals_kills, event_intervals_death] |
| 65 | + events_intervals_list = [event_intervals_kills, event_intervals_death] |
54 | 66 |
|
55 | 67 | for sensor_name in sensors_columns_dict:
|
56 | 68 | df = session_data_dict[sensor_name].copy()
|
|
63 | 75 | # # df.values = ss.fit_transform(df.values)
|
64 | 76 | # df.loc[:, sensors_columns_dict[sensor_name]] = ss.fit_transform(df.loc[:, sensors_columns_dict[sensor_name]])
|
65 | 77 |
|
66 |
| - ### WARNING: it is CUSTOM PART |
67 |
| - if sensor_name == 'schairlog': |
68 |
| - chair_analyser = GeneralAnalyser( |
69 |
| - df, |
70 |
| - pic_prefix=pic_prefix, |
71 |
| - sensor_name='Chair', # Manual assignment |
72 |
| - session_id=session_id, |
73 |
| - events_intervals_list=events_intervals_list, |
74 |
| - interval=interval, |
75 |
| - reaction_multiplier=reaction_multiplier, |
76 |
| - ) |
77 |
| - # chair_analyser.get_floating_features() # Need to be refactored |
78 |
| - chair_analyser._append_floating_features(interval=interval) |
79 |
| - |
80 |
| - for column in sensors_columns_dict[sensor_name]: |
81 |
| - analyser_column_pairs_list.append([chair_analyser, column]) |
| 78 | + # ### WARNING: it is CUSTOM PART |
| 79 | + # if sensor_name == 'schairlog': |
| 80 | + # chair_analyser = GeneralAnalyser( |
| 81 | + # df, |
| 82 | + # pic_prefix=pic_prefix, |
| 83 | + # sensor_name='Chair', # Manual assignment |
| 84 | + # session_id=session_id, |
| 85 | + # events_intervals_list=events_intervals_list, |
| 86 | + # interval=interval, |
| 87 | + # reaction_multiplier=reaction_multiplier, |
| 88 | + # ) |
| 89 | + # # chair_analyser.get_floating_features() # Need to be refactored |
| 90 | + # chair_analyser._append_floating_features(interval=interval) |
| 91 | + # |
| 92 | + # for column in sensors_columns_dict[sensor_name]: |
| 93 | + # analyser_column_pairs_list.append([chair_analyser, column]) |
82 | 94 |
|
83 | 95 |
|
84 | 96 | ### VISUALIZATION
|
|
95 | 107 | pic_prefix=pic_prefix,
|
96 | 108 | session_id=session_id,
|
97 | 109 | event_intervals_list=events_intervals_list,
|
98 |
| - n_rows=3, # TODO: automatically adjust number of rows and cols |
99 |
| - n_cols=3, |
| 110 | + n_rows=4, # TODO: automatically adjust number of rows and cols |
| 111 | + n_cols=4, |
100 | 112 | figsize=(21, 15),
|
101 |
| - plot_suptitle=True, |
| 113 | + plot_suptitle=False, |
| 114 | + alpha=0.8, |
| 115 | + alpha_background=0.5, |
102 | 116 | )
|
103 | 117 | # general_analyser.plot_measurements_timeline(column_name=sensor_name, intervals_dicts_list=intervals_dicts_list, alpha=0.9)
|
104 | 118 |
|
|
0 commit comments