|
| 1 | +import random |
| 2 | +from pathlib import Path |
| 3 | + |
| 4 | +import numpy as np |
| 5 | +import pandas as pd |
| 6 | +import torch |
| 7 | + |
| 8 | +from model import Kronos, KronosPredictor, KronosTokenizer |
| 9 | + |
| 10 | + |
| 11 | +TEST_DATA_ROOT = Path(__file__).parent |
| 12 | +INPUT_DATA_PATH = TEST_DATA_ROOT / "regression_input.csv" |
| 13 | +OUTPUT_DATA_DIR = TEST_DATA_ROOT |
| 14 | +MAX_CTX_LEN = 512 |
| 15 | +TEST_CTX_LEN = [512, 256] |
| 16 | +PRED_LEN = 8 |
| 17 | +FEATURE_NAMES = ["open", "high", "low", "close", "volume", "amount"] |
| 18 | + |
| 19 | +MODEL_REVISION = "901c26c1332695a2a8f243eb2f37243a37bea320" |
| 20 | +TOKENIZER_REVISION = "0e0117387f39004a9016484a186a908917e22426" |
| 21 | +SEED = 123 |
| 22 | + |
| 23 | +DEVICE = "cpu" |
| 24 | + |
| 25 | + |
| 26 | +def set_seed(seed: int) -> None: |
| 27 | + random.seed(seed) |
| 28 | + np.random.seed(seed) |
| 29 | + torch.manual_seed(seed) |
| 30 | + if torch.backends.cudnn.is_available(): |
| 31 | + torch.backends.cudnn.deterministic = True |
| 32 | + torch.backends.cudnn.benchmark = False |
| 33 | + |
| 34 | + |
| 35 | +def generate_output(ctx_len: int) -> None: |
| 36 | + if ctx_len > MAX_CTX_LEN: |
| 37 | + raise ValueError( |
| 38 | + f"Context length for output generation ({ctx_len}) " |
| 39 | + f"cannot exceed maximum context length ({MAX_CTX_LEN})." |
| 40 | + ) |
| 41 | + |
| 42 | + context_df = df.iloc[:ctx_len].copy() |
| 43 | + future_timestamps = df["timestamps"].iloc[ |
| 44 | + ctx_len : ctx_len + PRED_LEN |
| 45 | + ].reset_index(drop=True) |
| 46 | + |
| 47 | + tokenizer = KronosTokenizer.from_pretrained("NeoQuasar/Kronos-Tokenizer-base", revision=TOKENIZER_REVISION) |
| 48 | + model = Kronos.from_pretrained("NeoQuasar/Kronos-small", revision=MODEL_REVISION) |
| 49 | + tokenizer.eval() |
| 50 | + model.eval() |
| 51 | + |
| 52 | + predictor = KronosPredictor( |
| 53 | + model, tokenizer, device=DEVICE, max_context=MAX_CTX_LEN |
| 54 | + ) |
| 55 | + |
| 56 | + with torch.no_grad(): |
| 57 | + pred_df = predictor.predict( |
| 58 | + df=context_df[FEATURE_NAMES].reset_index(drop=True), |
| 59 | + x_timestamp=context_df["timestamps"].reset_index(drop=True), |
| 60 | + y_timestamp=future_timestamps, |
| 61 | + pred_len=PRED_LEN, |
| 62 | + T=1.0, |
| 63 | + top_k=1, |
| 64 | + top_p=1.0, |
| 65 | + verbose=False, |
| 66 | + sample_count=1, |
| 67 | + ) |
| 68 | + |
| 69 | + if pred_df.shape != (PRED_LEN, len(FEATURE_NAMES)): |
| 70 | + raise ValueError(f"Unexpected prediction shape: {pred_df.shape}") |
| 71 | + |
| 72 | + output_df = pred_df.reset_index(drop=True) |
| 73 | + output_df["timestamps"] = future_timestamps |
| 74 | + output_df = output_df[["timestamps"] + FEATURE_NAMES] |
| 75 | + output_df.to_csv(OUTPUT_DATA_DIR / f"regression_output_{ctx_len}.csv", index=False) |
| 76 | + print(f"Saved {ctx_len} fixture to {OUTPUT_DATA_DIR / f'regression_output_{ctx_len}.csv'}") |
| 77 | + |
| 78 | + |
| 79 | +if __name__ == "__main__": |
| 80 | + set_seed(SEED) |
| 81 | + |
| 82 | + |
| 83 | + df = pd.read_csv(INPUT_DATA_PATH, parse_dates=["timestamps"]) |
| 84 | + if df.shape[0] < MAX_CTX_LEN + PRED_LEN: |
| 85 | + raise ValueError( |
| 86 | + f"Input data must have at least {MAX_CTX_LEN + PRED_LEN} rows, " |
| 87 | + f"found {df.shape[0]} instead." |
| 88 | + ) |
| 89 | + |
| 90 | + for ctx_len in TEST_CTX_LEN: |
| 91 | + generate_output(ctx_len) |
0 commit comments