Skip to content

Commit 0b2280d

Browse files
committed
2 parents 51a708f + 5bede73 commit 0b2280d

37 files changed

+100013
-0
lines changed

README.md

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@ This repository stores a variety of examples demonstrating how to use the Oracle
88
| [exadata-express](./exadata-express) | Exadata Express examples |
99
| [java](./java) | Java based examples |
1010
| [javascript](./javascript) | JavaScript based examples |
11+
| [machine-learning](./machine-learning) | Oracle Machine Learning examples |
1112
| [optimizer](./optimizer) | Oracle Optmizer and Optimizer Stats examples |
1213
| [plsql](./plsql) | PL/SQL based examples |
1314
| [python](./python) | Python based examples |

machine-learning/Anomaly Detection.json

Lines changed: 1 addition & 0 deletions
Large diffs are not rendered by default.

machine-learning/Association Rules.json

Lines changed: 1 addition & 0 deletions
Large diffs are not rendered by default.

machine-learning/Attribute Importance.json

Lines changed: 1 addition & 0 deletions
Large diffs are not rendered by default.

machine-learning/Classification Prediction Model.json

Lines changed: 1 addition & 0 deletions
Large diffs are not rendered by default.

machine-learning/Clustering.json

Lines changed: 1 addition & 0 deletions
Large diffs are not rendered by default.

machine-learning/Credit Score Predictions notebook (1).json

Lines changed: 1 addition & 0 deletions
Large diffs are not rendered by default.
Lines changed: 98 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,98 @@
1+
CREATE TABLE ADWC_WS.CREDIT_SCORING_100K
2+
( CUSTOMER_ID NUMBER(38,0),
3+
AGE NUMBER(4,0),
4+
INCOME NUMBER(38,0),
5+
MARITAL_STATUS VARCHAR2(26 BYTE),
6+
NUMBER_OF_LIABLES NUMBER(3,0),
7+
WEALTH VARCHAR2(26 BYTE),
8+
EDUCATION_LEVEL VARCHAR2(26 BYTE),
9+
TENURE NUMBER(4,0),
10+
LOAN_TYPE VARCHAR2(26 BYTE),
11+
LOAN_AMOUNT NUMBER(38,0),
12+
LOAN_LENGTH NUMBER(5,0),
13+
GENDER VARCHAR2(26 BYTE),
14+
REGION VARCHAR2(26 BYTE),
15+
CURRENT_ADDRESS_DURATION NUMBER(5,0),
16+
RESIDENTAL_STATUS VARCHAR2(26 BYTE),
17+
NUMBER_OF_PRIOR_LOANS NUMBER(3,0),
18+
NUMBER_OF_CURRENT_ACCOUNTS NUMBER(3,0),
19+
NUMBER_OF_SAVING_ACCOUNTS NUMBER(3,0),
20+
OCCUPATION VARCHAR2(26 BYTE),
21+
HAS_CHECKING_ACCOUNT VARCHAR2(26 BYTE),
22+
CREDIT_HISTORY VARCHAR2(26 BYTE),
23+
PRESENT_EMPLOYMENT_SINCE VARCHAR2(26 BYTE),
24+
FIXED_INCOME_RATE NUMBER(4,1),
25+
DEBTOR_GUARANTORS VARCHAR2(26 BYTE),
26+
HAS_OWN_PHONE_NO VARCHAR2(26 BYTE),
27+
HAS_SAME_PHONE_NO_SINCE NUMBER(4,0),
28+
IS_FOREIGN_WORKER VARCHAR2(26 BYTE),
29+
NUMBER_OF_OPEN_ACCOUNTS NUMBER(3,0),
30+
NUMBER_OF_CLOSED_ACCOUNTS NUMBER(3,0),
31+
NUMBER_OF_INACTIVE_ACCOUNTS NUMBER(3,0),
32+
NUMBER_OF_INQUIRIES NUMBER(3,0),
33+
HIGHEST_CREDIT_CARD_LIMIT NUMBER(7,0),
34+
CREDIT_CARD_UTILIZATION_RATE NUMBER(4,1),
35+
DELINQUENCY_STATUS VARCHAR2(26 BYTE),
36+
NEW_BANKRUPTCY VARCHAR2(26 BYTE),
37+
NUMBER_OF_COLLECTIONS NUMBER(3,0),
38+
CONSUMER_FINDEX_SCORE NUMBER(6,0),
39+
MAX_CC_SPENT_AMOUNT NUMBER(7,0),
40+
MAX_CC_SPENT_AMOUNT_PREV NUMBER(7,0),
41+
CREDIT_SCORE NUMBER(4,1),
42+
HAS_COLLATERAL VARCHAR2(26 BYTE),
43+
FAMILY_SIZE NUMBER(3,0),
44+
CITY_SIZE VARCHAR2(26 BYTE),
45+
FATHERS_JOB VARCHAR2(26 BYTE),
46+
MOTHERS_JOB VARCHAR2(26 BYTE),
47+
MOST_SPENDING_TYPE VARCHAR2(26 BYTE),
48+
SECOND_MOST_SPENDING_TYPE VARCHAR2(26 BYTE),
49+
THIRD_MOST_SPENDING_TYPE VARCHAR2(26 BYTE),
50+
SCHOOL_FRIENDS_PERCENTAGE NUMBER(3,1),
51+
JOB_FRIENDS_PERCENTAGE NUMBER(3,1),
52+
NUMBER_OF_PROTESTOR_LIKES NUMBER(4,0),
53+
NO_OF_PROTESTOR_COMMENTS NUMBER(3,0),
54+
NO_OF_LINKEDIN_CONTACTS NUMBER(5,0),
55+
AVERAGE_JOB_CHANGING_PERIOD NUMBER(4,0),
56+
NO_OF_DEBTORS_ON_FB NUMBER(3,0),
57+
NO_OF_RECRUITERS_ON_LINKEDIN NUMBER(4,0),
58+
NO_OF_TOTAL_ENDORSEMENTS NUMBER(4,0),
59+
NO_OF_FOLLOWERS_ON_TWITTER NUMBER(5,0),
60+
MODE_JOB_OF_CONTACTS VARCHAR2(26 BYTE),
61+
AVERAGE_NO_OF_RETWEETS NUMBER(4,0),
62+
FACEBOOK_INFLUENCE_SCORE NUMBER(3,1),
63+
PERCENTAGE_PHD_ON_LINKEDIN NUMBER(4,0),
64+
PERCENTAGE_MASTERS NUMBER(4,0),
65+
PERCENTAGE_UG NUMBER(4,0),
66+
PERCENTAGE_HIGH_SCHOOL NUMBER(4,0),
67+
PERCENTAGE_OTHER NUMBER(4,0),
68+
IS_POSTED_STH_WITHIN_A_MONTH VARCHAR2(26 BYTE),
69+
MOST_POPULAR_POST_CATEGORY VARCHAR2(26 BYTE),
70+
INTEREST_RATE NUMBER(4,1),
71+
EARNINGS NUMBER(4,1),
72+
UNEMPLOYMENT_INDEX NUMBER(5,1),
73+
PRODUCTION_INDEX NUMBER(6,1),
74+
HOUSING_INDEX NUMBER(7,2),
75+
CONSUMER_CONFIDENCE_INDEX NUMBER(4,2),
76+
INFLATION_RATE NUMBER(5,2),
77+
CUSTOMER_VALUE_SEGMENT VARCHAR2(26 BYTE),
78+
CUSTOMER_DMG_SEGMENT VARCHAR2(26 BYTE),
79+
CUSTOMER_LIFETIME_VALUE NUMBER(8,0),
80+
CHURN_RATE_OF_CC1 NUMBER(4,1),
81+
CHURN_RATE_OF_CC2 NUMBER(4,1),
82+
CHURN_RATE_OF_CCN NUMBER(5,2),
83+
CHURN_RATE_OF_ACCOUNT_NO1 NUMBER(4,1),
84+
CHURN_RATE__OF_ACCOUNT_NO2 NUMBER(4,1),
85+
CHURN_RATE_OF_ACCOUNT_NON NUMBER(4,2),
86+
HEALTH_SCORE NUMBER(3,0),
87+
CUSTOMER_DEPTH NUMBER(3,0),
88+
LIFECYCLE_STAGE NUMBER(38,0)
89+
)
90+
91+
alter table credit_scoring_100k add(credit_score_bin varchar2(10));
92+
93+
update credit_scoring_100k set credit_score_bin =
94+
case when CREDIT_SCORE < 3 then '< 3.0'
95+
when CREDIT_SCORE >= 3 then '>= 3.0'
96+
when CREDIT_SCORE IS NULL then 'Null bin'
97+
end;
98+
commit;

machine-learning/Data/CENSUS.csv

Lines changed: 32562 additions & 0 deletions
Large diffs are not rendered by default.

machine-learning/Data/CHURNERS01.csv

Lines changed: 2071 additions & 0 deletions
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)