@@ -174,6 +174,125 @@ def uuid
174174 "%08x-%04x-%04x-%04x-%04x%08x" % ary
175175 end
176176
177+ alias uuid_v4 uuid
178+
179+ # Generate a random v7 UUID (Universally Unique IDentifier).
180+ #
181+ # require 'random/formatter'
182+ #
183+ # Random.uuid_v7 # => "0188d4c3-1311-7f96-85c7-242a7aa58f1e"
184+ # Random.uuid_v7 # => "0188d4c3-16fe-744f-86af-38fa04c62bb5"
185+ # Random.uuid_v7 # => "0188d4c3-1af8-764f-b049-c204ce0afa23"
186+ # Random.uuid_v7 # => "0188d4c3-1e74-7085-b14f-ef6415dc6f31"
187+ # # |<--sorted-->| |<----- random ---->|
188+ #
189+ # # or
190+ # prng = Random.new
191+ # prng.uuid_v7 # => "0188ca51-5e72-7950-a11d-def7ff977c98"
192+ #
193+ # The version 7 UUID starts with the least significant 48 bits of a 64 bit
194+ # Unix timestamp (milliseconds since the epoch) and fills the remaining bits
195+ # with random data, excluding the version and variant bits.
196+ #
197+ # This allows version 7 UUIDs to be sorted by creation time. Time ordered
198+ # UUIDs can be used for better database index locality of newly inserted
199+ # records, which may have a significant performance benefit compared to random
200+ # data inserts.
201+ #
202+ # The result contains 74 random bits (9.25 random bytes).
203+ #
204+ # Note that this method cannot be made reproducable with Kernel#srand, which
205+ # can only affect the random bits. The sorted bits will still be based on
206+ # Process.clock_gettime.
207+ #
208+ # See draft-ietf-uuidrev-rfc4122bis[https://datatracker.ietf.org/doc/draft-ietf-uuidrev-rfc4122bis/]
209+ # for details of UUIDv7.
210+ #
211+ # ==== Monotonicity
212+ #
213+ # UUIDv7 has millisecond precision by default, so multiple UUIDs created
214+ # within the same millisecond are not issued in monotonically increasing
215+ # order. To create UUIDs that are time-ordered with sub-millisecond
216+ # precision, up to 12 bits of additional timestamp may added with
217+ # +extra_timestamp_bits+. The extra timestamp precision comes at the expense
218+ # of random bits. Setting <tt>extra_timestamp_bits: 12</tt> provides ~244ns
219+ # of precision, but only 62 random bits (7.75 random bytes).
220+ #
221+ # prng = Random.new
222+ # Array.new(4) { prng.uuid_v7(extra_timestamp_bits: 12) }
223+ # # =>
224+ # ["0188d4c7-13da-74f9-8b53-22a786ffdd5a",
225+ # "0188d4c7-13da-753b-83a5-7fb9b2afaeea",
226+ # "0188d4c7-13da-754a-88ea-ac0baeedd8db",
227+ # "0188d4c7-13da-7557-83e1-7cad9cda0d8d"]
228+ # # |<--- sorted --->| |<-- random --->|
229+ #
230+ # Array.new(4) { prng.uuid_v7(extra_timestamp_bits: 8) }
231+ # # =>
232+ # ["0188d4c7-3333-7a95-850a-de6edb858f7e",
233+ # "0188d4c7-3333-7ae8-842e-bc3a8b7d0cf9", # <- out of order
234+ # "0188d4c7-3333-7ae2-995a-9f135dc44ead", # <- out of order
235+ # "0188d4c7-3333-7af9-87c3-8f612edac82e"]
236+ # # |<--- sorted -->||<---- random --->|
237+ #
238+ # Any rollbacks of the system clock will break monotonicity. UUIDv7 is based
239+ # on UTC, which excludes leap seconds and can rollback the clock. To avoid
240+ # this, the system clock can synchronize with an NTP server configured to use
241+ # a "leap smear" approach. NTP or PTP will also be needed to synchronize
242+ # across distributed nodes.
243+ #
244+ # Counters and other mechanisms for stronger guarantees of monotonicity are
245+ # not implemented. Applications with stricter requirements should follow
246+ # {Section 6.2}[https://www.ietf.org/archive/id/draft-ietf-uuidrev-rfc4122bis-07.html#monotonicity_counters]
247+ # of the specification.
248+ #
249+ def uuid_v7 ( extra_timestamp_bits : 0 )
250+ case ( extra_timestamp_bits = Integer ( extra_timestamp_bits ) )
251+ when 0 # min timestamp precision
252+ ms = Process . clock_gettime ( Process ::CLOCK_REALTIME , :millisecond )
253+ rand = random_bytes ( 10 )
254+ rand . setbyte ( 0 , rand . getbyte ( 0 ) & 0x0f | 0x70 ) # version
255+ rand . setbyte ( 2 , rand . getbyte ( 2 ) & 0x3f | 0x80 ) # variant
256+ "%08x-%04x-%s" % [
257+ ( ms & 0x0000_ffff_ffff_0000 ) >> 16 ,
258+ ( ms & 0x0000_0000_0000_ffff ) ,
259+ rand . unpack ( "H4H4H12" ) . join ( "-" )
260+ ]
261+
262+ when 12 # max timestamp precision
263+ ms , ns = Process . clock_gettime ( Process ::CLOCK_REALTIME , :nanosecond )
264+ . divmod ( 1_000_000 )
265+ extra_bits = ns * 4096 / 1_000_000
266+ rand = random_bytes ( 8 )
267+ rand . setbyte ( 0 , rand . getbyte ( 0 ) & 0x3f | 0x80 ) # variant
268+ "%08x-%04x-7%03x-%s" % [
269+ ( ms & 0x0000_ffff_ffff_0000 ) >> 16 ,
270+ ( ms & 0x0000_0000_0000_ffff ) ,
271+ extra_bits ,
272+ rand . unpack ( "H4H12" ) . join ( "-" )
273+ ]
274+
275+ when ( 0 ..12 ) # the generic version is slower than the special cases above
276+ rand_a , rand_b1 , rand_b2 , rand_b3 = random_bytes ( 10 ) . unpack ( "nnnN" )
277+ rand_mask_bits = 12 - extra_timestamp_bits
278+ ms , ns = Process . clock_gettime ( Process ::CLOCK_REALTIME , :nanosecond )
279+ . divmod ( 1_000_000 )
280+ "%08x-%04x-%04x-%04x-%04x%08x" % [
281+ ( ms & 0x0000_ffff_ffff_0000 ) >> 16 ,
282+ ( ms & 0x0000_0000_0000_ffff ) ,
283+ 0x7000 |
284+ ( ( ns * ( 1 << extra_timestamp_bits ) / 1_000_000 ) << rand_mask_bits ) |
285+ rand_a & ( ( 1 << rand_mask_bits ) - 1 ) ,
286+ 0x8000 | ( rand_b1 & 0x3fff ) ,
287+ rand_b2 ,
288+ rand_b3
289+ ]
290+
291+ else
292+ raise ArgumentError , "extra_timestamp_bits must be in 0..12"
293+ end
294+ end
295+
177296 private def gen_random ( n )
178297 self . bytes ( n )
179298 end
0 commit comments