|
| 1 | +import argparse |
| 2 | +import numpy as np |
| 3 | +import os |
| 4 | +import tensorflow.compat.v2 as tf |
| 5 | +import horovod.tensorflow.keras as hvd |
| 6 | + |
| 7 | + |
| 8 | + |
| 9 | +max_features = 20000 |
| 10 | +maxlen = 400 |
| 11 | +embedding_dims = 300 |
| 12 | +filters = 250 |
| 13 | +kernel_size = 3 |
| 14 | +hidden_dims = 250 |
| 15 | + |
| 16 | + |
| 17 | +def parse_args(): |
| 18 | + |
| 19 | + parser = argparse.ArgumentParser() |
| 20 | + |
| 21 | + # hyperparameters sent by the client are passed as command-line arguments to the script |
| 22 | + parser.add_argument('--epochs', type=int, default=1) |
| 23 | + parser.add_argument('--batch_size', type=int, default=64) |
| 24 | + |
| 25 | + # data directories |
| 26 | + parser.add_argument('--train', type=str, default=os.environ.get('SM_CHANNEL_TRAIN')) |
| 27 | + parser.add_argument('--test', type=str, default=os.environ.get('SM_CHANNEL_TEST')) |
| 28 | + |
| 29 | + # model directory: we will use the default set by SageMaker, /opt/ml/model |
| 30 | + parser.add_argument('--model_dir', type=str, default=os.environ.get('SM_MODEL_DIR')) |
| 31 | + |
| 32 | + return parser.parse_known_args() |
| 33 | + |
| 34 | + |
| 35 | +def get_train_data(train_dir): |
| 36 | + |
| 37 | + x_train = np.load(os.path.join(train_dir, 'x_train.npy')) |
| 38 | + y_train = np.load(os.path.join(train_dir, 'y_train.npy')) |
| 39 | + print('x train', x_train.shape,'y train', y_train.shape) |
| 40 | + |
| 41 | + return x_train, y_train |
| 42 | + |
| 43 | + |
| 44 | +def get_test_data(test_dir): |
| 45 | + |
| 46 | + x_test = np.load(os.path.join(test_dir, 'x_test.npy')) |
| 47 | + y_test = np.load(os.path.join(test_dir, 'y_test.npy')) |
| 48 | + print('x test', x_test.shape,'y test', y_test.shape) |
| 49 | + |
| 50 | + return x_test, y_test |
| 51 | + |
| 52 | + |
| 53 | +def get_model(): |
| 54 | + |
| 55 | + embedding_layer = tf.keras.layers.Embedding(max_features, |
| 56 | + embedding_dims, |
| 57 | + input_length=maxlen) |
| 58 | + |
| 59 | + sequence_input = tf.keras.Input(shape=(maxlen,), dtype='int32') |
| 60 | + embedded_sequences = embedding_layer(sequence_input) |
| 61 | + x = tf.keras.layers.Dropout(0.2)(embedded_sequences) |
| 62 | + x = tf.keras.layers.Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)(x) |
| 63 | + x = tf.keras.layers.MaxPooling1D()(x) |
| 64 | + x = tf.keras.layers.GlobalMaxPooling1D()(x) |
| 65 | + x = tf.keras.layers.Dense(hidden_dims, activation='relu')(x) |
| 66 | + x = tf.keras.layers.Dropout(0.2)(x) |
| 67 | + preds = tf.keras.layers.Dense(1, activation='sigmoid')(x) |
| 68 | + |
| 69 | + return tf.keras.Model(sequence_input, preds) |
| 70 | + |
| 71 | + |
| 72 | +if __name__ == "__main__": |
| 73 | + |
| 74 | + args, _ = parse_args() |
| 75 | + |
| 76 | + hvd.init() |
| 77 | + lr = 0.001 |
| 78 | + # Horovod: pin GPU to be used to process local rank (one GPU per process) |
| 79 | + gpus = tf.config.experimental.list_physical_devices("GPU") |
| 80 | + for gpu in gpus: |
| 81 | + tf.config.experimental.set_memory_growth(gpu, True) |
| 82 | + if gpus: |
| 83 | + tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], "GPU") |
| 84 | + |
| 85 | + # Horovod: adjust learning rate based on number of GPUs. |
| 86 | + opt = tf.optimizers.Adam(lr * hvd.size()) |
| 87 | + |
| 88 | + # Horovod: add Horovod DistributedOptimizer. |
| 89 | + opt = hvd.DistributedOptimizer(opt) |
| 90 | + |
| 91 | + x_train, y_train = get_train_data(args.train) |
| 92 | + x_test, y_test = get_test_data(args.test) |
| 93 | + |
| 94 | + model = get_model() |
| 95 | + |
| 96 | + model.compile( |
| 97 | + loss=tf.losses.SparseCategoricalCrossentropy(), |
| 98 | + optimizer=opt, |
| 99 | + metrics=["accuracy"], |
| 100 | + experimental_run_tf_function=False, |
| 101 | + ) |
| 102 | + |
| 103 | + callbacks = [ |
| 104 | + hvd.callbacks.BroadcastGlobalVariablesCallback(0), |
| 105 | + hvd.callbacks.MetricAverageCallback(), |
| 106 | + hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=3, verbose=1), |
| 107 | + ] |
| 108 | + |
| 109 | + if hvd.rank() == 0: |
| 110 | + callbacks.append(tf.keras.callbacks.ModelCheckpoint("checkpoint-{epoch}.h5")) |
| 111 | + |
| 112 | + verbose = 1 if hvd.rank() == 0 else 0 |
| 113 | + |
| 114 | + #hook = KerasHook(out_dir='/tmp/test') |
| 115 | + model.fit(x_train, y_train, |
| 116 | + steps_per_epoch=500 // hvd.size(), |
| 117 | + callbacks=callbacks, |
| 118 | + batch_size=args.batch_size, |
| 119 | + epochs=args.epochs, |
| 120 | + validation_data=(x_test, y_test), |
| 121 | + ) |
| 122 | + |
| 123 | + # create a TensorFlow SavedModel for deployment to a SageMaker endpoint with TensorFlow Serving |
| 124 | + tf.saved_model.save(model, args.model_dir) |
| 125 | + |
| 126 | + |
0 commit comments