Skip to content

Commit 298cb8e

Browse files
authored
fix get_execution_role error (aws#1835)
1 parent 90796b7 commit 298cb8e

File tree

1 file changed

+15
-15
lines changed

1 file changed

+15
-15
lines changed

introduction_to_applying_machine_learning/ensemble_modeling/EnsembleLearnerCensusIncome.ipynb

Lines changed: 15 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -73,7 +73,7 @@
7373
"import time\n",
7474
"import re\n",
7575
"import sagemaker \n",
76-
"role = get_execution_role()\n",
76+
"role = sagemaker.get_execution_role()\n",
7777
"\n",
7878
"# Now let's define the S3 bucket we'll used for the remainder of this example.\n",
7979
"\n",
@@ -340,8 +340,8 @@
340340
},
341341
"outputs": [],
342342
"source": [
343-
"from sagemaker.amazon.amazon_estimator import get_image_uri\n",
344-
"container = get_image_uri(boto3.Session().region_name, 'xgboost')"
343+
"from sagemaker.amazon.amazon_estimator import image_uris\n",
344+
"container = image_uris.retrieve(region=boto3.Session().region_name, framework='xgboost', version='1')"
345345
]
346346
},
347347
{
@@ -645,11 +645,11 @@
645645
" \n",
646646
" for offset in range(0, items, batch_size):\n",
647647
" if offset+batch_size < items:\n",
648-
" datav = data.iloc[offset:(offset+batch_size),:].as_matrix()\n",
648+
" datav = data.iloc[offset:(offset+batch_size),:].values\n",
649649
" results = do_predict(datav, endpoint_name, content_type)\n",
650650
" arrs.extend(results)\n",
651651
" else:\n",
652-
" datav = data.iloc[offset:items,:].as_matrix()\n",
652+
" datav = data.iloc[offset:items,:].values\n",
653653
" arrs.extend(do_predict(datav, endpoint_name, content_type))\n",
654654
" sys.stdout.write('.')\n",
655655
" return(arrs)"
@@ -739,14 +739,14 @@
739739
"data_test = pd.read_csv(\"formatted_test.csv\", sep=',', header=None) \n",
740740
"data_val = pd.read_csv(\"formatted_val.csv\", sep=',', header=None) \n",
741741
"\n",
742-
"train_y = data_train.iloc[:,0].as_matrix();\n",
743-
"train_X = data_train.iloc[:,1:].as_matrix();\n",
742+
"train_y = data_train.iloc[:,0].values;\n",
743+
"train_X = data_train.iloc[:,1:].values;\n",
744744
"\n",
745-
"val_y = data_val.iloc[:,0].as_matrix();\n",
746-
"val_X = data_val.iloc[:,1:].as_matrix();\n",
745+
"val_y = data_val.iloc[:,0].values;\n",
746+
"val_X = data_val.iloc[:,1:].values;\n",
747747
"\n",
748-
"test_y = data_test.iloc[:,0].as_matrix();\n",
749-
"test_X = data_test.iloc[:,1:].as_matrix();\n"
748+
"test_y = data_test.iloc[:,0].values;\n",
749+
"test_X = data_test.iloc[:,1:].values;\n"
750750
]
751751
},
752752
{
@@ -826,8 +826,8 @@
826826
},
827827
"outputs": [],
828828
"source": [
829-
"from sagemaker.amazon.amazon_estimator import get_image_uri\n",
830-
"container = get_image_uri(boto3.Session().region_name, 'linear-learner')"
829+
"from sagemaker.amazon.amazon_estimator import image_uris\n",
830+
"container = image_uris.retrieve(region=boto3.Session().region_name, framework='linear-learner', version='1')"
831831
]
832832
},
833833
{
@@ -1097,11 +1097,11 @@
10971097
" \n",
10981098
" for offset in range(0, items, batch_size):\n",
10991099
" if offset+batch_size < items:\n",
1100-
" datav = data.iloc[offset:(offset+batch_size),:].as_matrix()\n",
1100+
" datav = data.iloc[offset:(offset+batch_size),:].values\n",
11011101
" results = do_predict_linear(datav, endpoint_name, content_type)\n",
11021102
" arrs.extend(results)\n",
11031103
" else:\n",
1104-
" datav = data.iloc[offset:items,:].as_matrix()\n",
1104+
" datav = data.iloc[offset:items,:].values\n",
11051105
" arrs.extend(do_predict_linear(datav, endpoint_name, content_type))\n",
11061106
" sys.stdout.write('.')\n",
11071107
" return(arrs)"

0 commit comments

Comments
 (0)